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Monte Carlo sampling of negative-temperature plasma states

John A. Krommes* and Sharadini Rath†

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543, USA
~Received 12 July 2002; published 9 June 2003!

A Monte Carlo procedure is used to generateN-particle configurations compatible with two-temperature
canonical equilibria in two dimensions, with particular attention to nonlinear plasma gyrokinetics. An unusual
feature of the problem is the importance of a nontrivial probability density functionP0(w), the probability of
realizing a setw of Fourier amplitudes associated with an ensemble of uniformly distributed, independent
particles. This quantity arises because the equilibrium distribution is specified in terms ofw, whereas the
sampling procedure naturally produces particle statesG; w andG are related via a gyrokinetic Poisson equation,
highly nonlinear in its dependence onG. Expansion and asymptotic methods are used to calculateP0(w)
analytically; excellent agreement is found between the large-N asymptotic result and a direct numerical calcu-
lation. The algorithm is tested by successfully generating a variety of states of both positive and negative
temperature, including ones in which either the longest- or shortest-wavelength modes are excited to relatively
large amplitudes.
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I. INTRODUCTION

In the present paper, we will show how to genera
N-particle configurations compatible with two-temperatu
canonical spectral equilibria in two dimensions. The meth
could be used for testing nonlinear gyrokinetic simulatio
of plasmas; more generally, the problem raises interes
issues involving equilibrium statistical mechanics a
asymptotic analysis.

Particle simulations~often called molecular-dynamics ex
periments in the literature on neutral fluids! are widely used
for studying the equilibrium and nonequilibrium behavior
nonlinear systems@1–4#. Such methods are quite natur
when the discreteness of the many-body system is impor
but particle simulations have also been employed as via
alternatives to more conventional spectral or finite-differen
approaches to the integration of hyperbolic partial differe
tial equations in the continuum approximation. This is p
ticularly true in plasma physics@3#, where collective nonlin-
ear, neutral-fluid-like phenomena—essentially independ
of the details of the microscopic velocity distribution—a
often driven by wave-particle interactions strongly depe
dent on such details. The conservative nature of the Vla
or closely related gyrokinetic equation@5# is difficult to
handle with conventional techniques because phase-spac
ements can be stretched and otherwise distorted to scale
are arbitrarily small~in the absence of collisions@6#!. Particle
simulation deals with this situation efficiently by followin
the particle or gyrocenter trajectories exactly in an elec
magnetic field that is coarse grained to a finite resolution
space.

Recent interest in plasma physics has focused on none
librium gyrokinetic phenomena@7,8#. The nonlinear gyroki-
netic equation@5#, appropriate for low-frequency, long
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wavelength fluctuations, is derivable from the magnetiz
Vlasov equation by Hamiltonian transformations1 @9# that
analytically remove the rapid gyromotion in favor of appr
priately defined gyrocenters whose characteristic equat
of motion are the generalizations of the familiar drift equ
tions to the case of finite ion gyroradius. In the quasineut
ity condition that replaces Poisson’s equation, a key role
played by the polarization charge density of the ions~see
Appendix A!, proportional to thez component of the vortic-
ity of the cross-fieldE3B velocity. The resulting nonlinea
equations display phenomena closely related to the w
known, unusual behavior of two-dimensional~2D! neutral
fluids @10#. For example, the Hasegawa-Mima equati
@8,11#, an important limit@9# of the gyrokinetic system that is
appropriate for adiabatic electrons and vanishing ion te
perature, possesses both an energy- and an enstrophy-re
invariant and therefore displays all of the interesting ph
nomena associated with two-temperature2 canonical~Gibb-
sian! equilibria @10# of the ~finitely truncated! set of Fourier
amplitudes of the electrostatic potentialw ~or ion gyrocenter
density, to within a simple wave-number-dependent sc
factor!. In the presence of dissipation or antidissipation~e.g.,
when nonadiabatic electron response is reinstated!, those in-
variants are broken, but the tendency of the nonlinear te
to relax fluctuations to thermal equilibrium is still manifeste
through the dual cascades@12#—of energy E, toward the
long wavelengths, and of~potential! enstrophyV, toward the
short wavelengths—that can be excited@13# for forcing at
intermediate wave numbers.

A standard test in the development of gyrokinetic parti
simulations should therefore be to check that the Hasega

07,

1A review of some of the formal aspects of the derivation of t
nonlinear gyrokinetic Poisson system can be found in Appendi
of Ref. @8#.

2The ‘‘temperatures’’ referred to here should not be confused w
the thermal particle temperature associated with a heat bath.
Sec. II for a review of two-parameter spectral equilibria.
©2003 The American Physical Society02-1
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Mima limit relaxes to the two-temperature canonical sp
trum based on the initial values of energy and enstrop
Somewhat surprisingly, this has not been done, although
analogous exercise is standard for Vlasov codes@3#, where
one verifies the thermal-equilibrium wave-number spectr
^dE2&(k)/8p5 1

2 T/(11k2lD
2 ) ~here,dE is the electric field

fluctuation,T is the thermal temperature, andlD is the De-
bye length!, and has also been performed for simulations
the full gyrokinetic equation with finiteki @14#. ~The
thermal-equilibrium fluctuation properties of the gyrokine
system are discussed in Refs.@15–17#.! One explanation for
this omission involves the difficulty of achieving rando
initial particle distributions with specifiedE andV. It is, of
course, possible to begin with an arbitrary initialization~e.g.,
particle positions that are completely independent and
formly distributed, or alternatively a ‘‘quiet start’’@18#!, cal-
culate the associatedE andV and the predicted equilibrium
spectrum, then check for relaxation toward that equilibriu
and that certainly provides a nontrivial test of the code. Ho
ever, reliance on just one or two standard initializations a
the arbitrariness of any particular initial state imply that o
has no systematic way of exploring the extremes of theE-V
space, including, in particular, the interesting regimes
negative temperature. For example, it is noteworthy that
simplest random 2D initialization, in which the particle p
sitions are sampled from a homogeneous, correlation-
distribution, has mean energy and enstrophy compatible w
a canonical distribution withpositive ~and equal! tempera-
tures.~We will derive this result in Sec. II C.!

In addition to the gyrokinetic initialization problem, th
generation of negative-temperature particle states is inte
ing in its own right as a nontrivial problem in statistic
Therefore, in this paper, we propose@46# and theoretically
analyze a method of generating 2D particle-state realizat
of canonical equilibria for arbitrary values of the invarian
~equivalently, for arbitrary temperatures!. The~Monte Carlo!
procedure employs the Markov-chain algorithm of Metrop
lis et al. ~@19#, henceforth called MRRTT! originally ~and
still @20#! used for investigating the thermodynamic prop
ties of dense liquids. Although the present application is
sentially straightforward, it does not appear to have b
previously used in this particular context. The subtlety in
calculation is that in the present case the random varia
that are canonically distributed are the Fourier amplitud
whereas one desires realizations of particle positions, wh
are related to the Fourier amplitudes via a nontrivial non
ear functional dependence. An additional complication is t
typically there are many more particles than retained Fou
amplitudes, so the relation between the particle states an
potentials is many to one. In the standard application to
tistical mechanics, on the other hand, the natural variable
the Gibbs distribution are just the particle phase-space c
dinates themselves; no functional relation is involved. Th
in conventional MRRTT the successive states of the Mar
chain are used for the calculation of analytically intracta
ensemble averages over a highly non-Gaussian distribu
In the present case, the equilibrium spectrum is pur
Gaussian in the Fourier amplitudes, so analytical calculati
of arbitrary ~static! moments of the amplitudes are straigh
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forward; however, the determination of compatible partic
realizations is nontrivial.

For notational convenience, we will denote byw both the
field w~x! and the set ofM retained Fourier amplitudesw
[$wk(n)un51,...,M%, wheren is an arbitrary labeling of the
wave numbers.

The necessity for dealing simultaneously with two sets
random variables, namely, the particle statesG and the Fou-
rier amplitudesw, means that a nontrivial transition probab
ity enters the formalism. In standard Monte Carlo algorith
that deal just with particle probabilities, the basic functi
T0(G8uG) describes the probability of proposing stateG8,
given initial stateG. Usually this function is just a constan
However, in the present application we begin with a parti
stateG @which corresponds to the set of Fourier amplitud
w~G!# and, effectively, propose anamplitudestatew8(G8).
The relevant transition probabilityT0(w8uw) can be related
to the probability density function~PDF! P0(w) of achieving
a particular set of Fourier amplitudes by distributing partic
uniformly on a lattice; this function depends nontrivially o
w. We devote considerable effort in calculatingP0 asymp-
totically and in analyzing its role in the appropriately mod
fied Monte Carlo algorithm.

The organization of this paper is as follows. We devo
Sec. II to a review of the form and properties of the stand
two-temperature canonical equilibria. In Sec. III, we revie
the algorithm of MRRTT and describe how to generalize
for application to the initialization problem. In Sec. IV, w
generate a variety of two-temperature particle states in o
to demonstrate the viability of the method. We summar
and discuss our results in Sec. V. Various details are
egated to the Appendixes. In Appendix A, we present
completeness a brief derivation of the Hasegawa-Mi
equation using gyrokinetic methods. In Appendix B, we d
rive a formula forP0(w) and present a few exact result
Finally, we devote Appendix C to a presentation of vario
approximate calculations ofP0 valid for a large number of
particles.

II. TWO-TEMPERATURE EQUILIBRIA

In essence, we are concerned with statistical samp
from a particular, somewhat unusual canonical probabi
distribution. In this section, we provide the necessary ba
ground material. Our conventions for Fourier transforms
introduced in Sec. II A~see also Appendix A of Ref.@8#!.
Then in Sec. II B, we introduce the two-temperature equil
ria relevant to the Hasegawa-Mima problem and review th
properties.

A. Fourier transform conventions

We work in a 2D box of sidesLx and Ly ~area V
5LxLy), on which periodic boundary conditions are im
posed. The electrostatic potential is resolved onto a rec
gular lattice of M tot5Mx3My points; e.g., xj5 j Dx,
Dx8Lx /Mx , j 50, 1,...,Mx21 ~we use the symbol8 for
definitions!. In practice, we consider a square box withLx
5Ly5L, Mx5M y ; however, we sometimes retain thex or y
labels for pedagogical purposes. The area of the fundame
2-2
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cell is DV5DxDy. The associated Fourier componen
obey, e.g.,knx

[kx5nxdkx , wheredkx[kmin82p/Lx . Wave-

number magnitudes are denoted ask8uku5(kx
21ky

2)1/2. For
arbitrary functionA(x), the fundamental Fourier conven
tions are

Ak5V21E dxe2 ik•xA~x!, ~1a!

A~x!5(
k

eik•xAk . ~1b!

For pointsxj on the lattice, we interpret

E dx¯[(
j

DV¯ ~2!

and pair ~1! becomes the discrete Fourier transform, w
kn•xj52p(nxj x /Mx1nyj y /M y). @We write sets of Carte-
sian integers as boldfaced vectors, e.g.,n8(nx ,ny).] We
sometimes writeAkn

[An ; one has

A2n5AM2n5An* , ~3!

the last equality holding for functions that are real inx space.
Although all operations on the lattice are discrete, we of
find the integral form of Eq.~2! to be a convenient short
hand.

B. Two-temperature canonical equilibria

We consider a conservative nonlinear system of coup
Fourier modesck . In the derivation of such equations from
continuum equations locally nonlinear inx space, the mode
coupling arises from the Fourier convolution theorem a
thus involves an infinite number of Fourier amplitudes. W
consider instead a system truncated to a finite numberM of
amplitudes. This corresponds to the actual situation in
simulations and is also required theoretically in order tha
conventional statistical dynamics can be introduced@10#.
Generally, the truncation is spherical,kmin<k<kmax, so M
,M tot . It is assumed that under such truncations two c
stants of the motion, the energyÊ and the enstrophyV̂, are
preserved. The hat denotes a function of the underlying
dom Fourier amplitudes:Ê[Ê(c) andV̂[V̂(c), where the
braces denote the collection of all retained modes:c
[$ck(n)un51,...,M%. Functions without hats will denote th
ensemble average, e.g.,E8^Ê&. It is then well known
@8,10,21# that the real and imaginary parts of theck can be
used as independent variables in standard statist
mechanics arguments that predict relaxation of arbitrary p
turbations to realizations drawn from a microcanonical
semble. In practice, the Gibbs distribution is used m
frequently:

P~c!5Z21 exp@2aÊ~c!2bV̂~c!#, ~4!

where Z is the appropriate normalization integral. The p
rametersa and b serve as inverse temperatures for ene
06640
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and enstrophy, respectively, and are functions of the
semble averagedE andV. For some ratios ofV/E, eithera
or b can be negative, as we will review in detail shortly.
states of negativea, the longest-wavelength modes are e
cited to relatively large levels; in states of negativeb, the
shortest-wavelength modes are so excited.

In the application to Hasegawa-Mima dynamics, we m
choosec to be the appropriately dimensionless electrosta
potentialw. The Hasegawa-Mima equation@11# is briefly re-
derived for completeness in Appendix A; it is

~12¹'
2 !] tw~x,t !1V* ]yw1VE•“~2¹'

2 w!50, ~5!

whereV* is the diamagnetic drift velocity~considered to be
a constant in this approximation!, VE8E3 ẑ, E82“w, and
perpendicular means with respect to the constant magn
field B5Bẑ. We consider the 2D~in x') version of this
equation, although 3D generalizations are possible. U
Fourier transformation in space, Eq.~5! becomes

~11k2!] twk1 iv* ~ky!wk5
1

2 (
k1p1q50

ẑ•~p3q!

3S xq* 2xp*

11xk
Dwp* wq* , ~6!

wherek[k' , v* (ky)8kyV* , andxk8k'
2 . This equation is

conservative. The more physically relevant model, in wh
both v* andx are replaced by complex quantities includin
dissipative effects, is called the Terry-Horton equati
@22,23#. See Sec. V for further remarks on that equation.

The quadratic invariants of the Hasegawa-Mima equat
are

S Ê~w!

V̂~w!
D 5(

k
S 1
k2D Êk , ~7a!

where

Êk8 1
2 ~11k2!uŵku2. ~7b!

The term 1 in the factor (11k2) describes the adiabatic re
sponse of the electrons, which stream rapidly along the m
netic field lines and tend to short out charge fluctuations
that term is ignored~equivalently, if one considers the shor
wavelength limit @47#!, the resulting equation is formally
identical to the two-dimensional Navier-Stokes equatio
with ¹'

2 w playing the role of thez component of the vortic-
ity.

Quantities~7! are invariant whenk is summed over all
modes out tò . They remain invariant if one removes from
the convolution sum in Eq.~6! all triad interactions having a
leg with magnitude larger than somekmax; that corresponds
to the spherical truncation mentioned earlier. Later, we w
consider other truncations and/or weightings. All of tho
can be embraced by introducing a non-negative weight fu
tion wk and generalizing Eq.~7a! to
2-3
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S Ê~w!

V̂~w!
D 5(

k
wkS 1

k2D Êk . ~8!

With this definition, the effective number of modes isM
5(kwk . For modes interior to the boundaries of the tru
cated k space, we consider onlywk51; however, the
weightings of the edge or corner points may differ from 1,
we will discuss later.

The thermal-equilibrium wave-number spectrum can n
be shown to be

Ek8^Êk&5
1

2 S 1

a1bk2D . ~9!

It is worth giving the derivation of this result in detail i
order to discuss and justify an annoying factor of 2. Withr
andi denoting real and imaginary parts andw (n)[wk(n) , one
has by definition

^Êk&5E )
n51

M8

dw r
~n!dw i

~n!~11k2!uwku2

3Z21 expS 2( 8
k̄

w
k̄
8~11 k̄2!~a1b k̄2!uw k̄u2D ;

~10!

of course,uwku25wk,r
2 1wk,i

2 . We have observed thatwk and
w2k are not independent, since by reality ofw(x) one has
w2k5wk* . Therefore, the factor of12 in definition ~7b! of the
invariants has been eliminated in the exponent of Eq.~10! by
replacing the unrestricted wave-number sum in Eq.~7a! by

the appropriate(k8 over the half space ofM88 1
2 M inde-

pendent modes.~We allow for the possibility that the appro
priate weight functionwk8 for (k8 may differ fromwk on the
boundary of thek space.! Result~9! then follows readily, at
least for the interior modes, by performing a simple Gauss
integral.~Note that the partition functionZ factors.!

The discrete nature of the Fourier transform introdu
subtlety into the evaluation of the invariants. It is nume
cally convenient to work with a square truncation, i.e.,
sum over all retained modes, as this eliminates a tim
consuming test to determine whether a mode should be
cluded. However, because of the symmetry properties~3! the

special modes (nx ,ny)P$(0,0), (1
2 Mx,0), (0,12 M y),

( 1
2 Mx , 1

2 M y)% are real. Since we are interested in fluctu
tions, we exclude the~0, 0! mode; however, the other mode
must be counted appropriately. Now since the imagin
parts of those modes vanish identically, those parts are
available as independent coordinates for the canonical di
bution. That, thus, has the schematic form~with x and y
referring here to the real and imaginary parts of anyEk)

P~M!;expF2S x1
21y1

2

2s1
2 D 2S x2

2

2s2
2D G , ~11!
06640
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where the subscript 1 refers to an interior mode, 2 refers
boundary mode,x1

21y1
25Êk1

, s1
28@4(a1bk1

2)#21, ands2

must be determined such that the spectrumEk is a smooth
function of k. SinceEk1

5^(x1
21y1

2)&52s1
2 and Ek2

5^x2
2&

5s2
2, one deduces that the real modes must be weighted

a factor of 1
2 in the summation(8 that defines the invariant

of the finite, discrete system. The corresponding weight fu
tion wk8 is thus asymmetric when considered over the en
square; however, the reflection symmetries on the lat
guarantee that the four corner points are identical and
edge points are identical to appropriate points on the fac
edge. Theoretically, then, one can replace(k8wk8 by 1

2 (kwk ,
wherewk corresponds to a weighting of the interior mod
by 1, the corner points by14 and the other edge points by1

2.
We will call this theweighted truncation. Note that numeri-
cally it is more efficient to employ the asymmetric weigh
wk8 ; however, thewk’s are easier to work with theoretically.3

Spectrum~9! is identical to that for the 2D neutral fluid
which has been discussed in depth by Kraichnan@25#. For
our later work in Sec. III, it is necessary to record here4 the
portion of Kraichnan’s analysis concerning the allowab
values ofa andb and the relation between$E,V% and$a, b%
in a notation that emphasizes the discrete nature of the s
trum and allows for arbitrary weight functionswk . It is use-
ful to couch the relations in terms of the energy and ens
phy per mode,

Ē8E/M, V̄8V/M. ~12!

It is also useful to define the dimensionless parameters

ā8aĒ, b̄8bĒ, ~13!

and the ratio

â8a/b5ā/b̄. ~14!

~This new use of the hat should cause no confusion in c
text.! One can then write definitions~7! in the form

S Ē

V̄
D 5

1

2b K S 1
k2D S 1

â1k2D L
k

, ~15!

where the notation̂¯&k denotes the average over the d
crete, truncated wave-number spectrum:

^A&k8
1

M (
k

wkAk . ~16!

It is useful to define the ratio of enstrophy to energy, a
mensionless quantity that should be thought of as the sq
of a ~dimensionless! wave numberk,

k28V/E5V̄/Ē. ~17!

3Figures illustrating this discussion can be found in Ref.@24#.
4A more concise version of this discussion can be found in S

3.7.2 of Ref.@8#.
2-4
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Then, upon adding and subtractingâ to the numerator of
expression~15! for V̄, one finds the convenient expressio

k25~2b̄ !212â, ~18!

where

b̄5
1

2 K 1

â1k2L
k

. ~19!

Equation ~18! can be used to prove an important co
straint that will be very useful in the subsequent Monte Ca
calculations. Define

Ū82~aĒ1bV̄!. ~20!

One has

Ū52bĒ~a/b1V̄/Ē! ~21a!

52b̄~ â1k2!. ~21b!

Upon using Eq.~18!, one finally finds

Ū51. ~22!

This is a simple generalization of the result that for a
PDF of the formP(x)}exp(2ax2), one has 2a^x2&51. Its
importance is that for a general non-Gaussian distribu
one will haveŪÞ1, so the approach ofŪ to 1 can be used a
a convenient~and, in practice, very sensitive! diagnostic of
the convergence of the Monte Carlo Markov chain to
desired asymptotic equilibrium distribution; see Sec. III B

The parameter space can now be analyzed by deman
that Ē, V̄, andEk be non-negative. Considered as a functi
of â, Ek is singular atâ52kmin

2 and â52kmax
2 , and one

can determine that the region2kmax
2 ,â,2kmin

2 is forbidden
since one or more of theEk would be negative. To analyz
the behavior in the vicinity ofâ52kmin

2 we write â5

2kmin
2 1e/M. Then,b̄5O(e21)→1` ase→01 . For fixed

Ē, which we always assume in considering the various l
iting cases, one sees that alsob→1`. The behavior of
ā8aĒ follows from ā5âb̄5(2kmin

2 1e/M)b̄'2kmin
2 b̄

→2`. Also, from Eq. ~18! k2→2â→kmin
2 . Symmetrical

behavior ensues in the vicinity ofâ52kmax
2 2e/M, with the

roles ofa andb as well askmin andkmax reversed. The othe
interesting points areâ50 andâ56`. Define the specia
wave numberska andkb according to

ka
28^k22&k

21, ~23a!

kb
25^k2&k . ~23b!

@That kb>ka is a consequence of a Schwartz inequality a
plied to the identity^(k2)(k22)&51.] Then at â50 one
finds Ē5(2bka

2)21, V̄5(2b)21, and from Eq. ~17! k2

5ka
2. As â→1` one obtainsĒ5(2a)21, V̄5(2a)21kb

2,

andk25kb
2. Since for fixedĒ a remains finite, we see tha
06640
o

n

e

ing
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b→01 as â→1`. The pointâ52` is obtained continu-
ously fromâ51` asb passes continuously through 0 fro
above. One thus identifies three regimes:

regime I kmin
2 <k2<ka

2,

2kmin
2 <â<0,

2`<ā<0,

`>b̄>~2ka
2!21;

regime II ka
2<k2<kb

2,

0<â,`,

0<ā<1/2,

~2ka
2!21>b̄>0;

regime III kb
2<k2<kmax

2 ,

2`,â<2kmax
2 ,

1/2<ā<`,

0>b̄>2`.

The qualitative features of this behavior are summarized
Figs. 1 and 2. Those figures should not be used for pre
quantitative work, since they actually plot the approximati
obtained by assuming that the spectrum is dense and sp
cally truncated@25#:

M'p~kmax
2 2kmin

2 !, ~24a!

FIG. 1. Important quantities for two-temperature equilibr
plotted vsâ8a/b. The crosshatched region is the forbidden zo
2kmax

2 ,â,2kmin
2 . For the purpose of illustration,kmin51 and

kmax5) are used in this and the following figure. Solid lin

k2(â); dash-dotted line,ā(â); triple dash-dotted line,b̄(â). The
dashed lines indicate the special noise caseâ51, k25k1

2. The
horizontal dotted lines indicate, from bottom to top, the spec

casesk25(0,1
2 ,ka

2,kb
2). The vertical dotted line indicates the boun

ary â50 between regimes I and II.
2-5
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b̄'
1

2
lnS â1kmax

2

ā1kmin
2 D Y ~kmax

2 2kmin
2 !, ~24b!

ka
2'

kmax
2 2kmin

2

ln~kmax
2 /kmin

2 !
, ~24c!

kb
2' 1

2 ~kmin
2 1kmax

2 !. ~24d!

Regime II is the most intuitively familiar regime of positiv
temperatures, bounded on the left by the enstrop
equipartition stateâ50, Vk5V̄5(2b)215ka

2Ē and on the

right by the energy-equipartition stateb50, Ek5Ē

5(2a)215V̄/kb
2. Regime I corresponds to negative-a

states; symmetrically, regime III corresponds to negativb
states. States with highly negativea have the longest-
wavelength modes excited to high levels. For states w
highly negative b, the excitation is concentrated at th
shortest-wavelength modes.

The precise numerical values of the characteristic w
numberska and kb are not accessible from the continuu
approximations~24!; they must be determined numerical
as a function of the number of discrete modes. We gener

FIG. 2. Important quantities for two-temperature equilibr
plotted vsk28V/E. Crosshatched region: forbidden zone2kmax

2

,â,2kmin
2 . Solid line,â(k2); dash-dotted line,ā(k2); triple dash-

dotted line,b̄(k2). The dashed lines indicated the special noise c
â51, k25k1

2. The vertical dotted lines indicate, from left to righ
ka

2 andkb
2. The horizontal dotted lines indicate, from bottom to to

the special casesb̄(kb
2)50 andā(ka

2)5
1
2 .
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considerMx5M y52m. In Tables I–III, we tabulate the val
ues ofka , kb , and the additional important wave numberk1
@defined later; see Eq.~37b!# normalized tokmin for represen-
tative m’s and the truncations defined by

spherical wk5H 1, 1<k<Mx/2

0, otherwise,

square wk5H 1 H 2Mx/2<kx<Mx/2
2M y/2<ky<M y/2

kÞ0

0, otherwise,

weighted wk5H dk H 2Mx/2<kx<Mx/2
2M y/2<ky<M y/2

kÞ0

0, otherwise,

where

dk8H 1 ~ interior point!

1/2 ~edge but not corner!

1/4 ~corner!.

~25!

For the spherical truncation one haskmax/kmin5
1
2Mx52m21;

for the other truncationskmax is& times larger.
For givenĒ andV̄, the associateda andb are determined

as follows. We replace the set$Ē,V̄% by $Ē,k2%. Relation
~18!,

k25k2~ â !5@2b̄~ â !#212â, ~26!

can be inverted~numerically, in practice! to give â(k2). The
function b̄(k2) @Eq. ~19!# is then known from Eq.~18! as

b̄~k2!5 1
2 @â~k2!1k2#21. ~27!

The functionā(k2)8aĒ follows from

ā~k2!5â~k2!b̄~k2!. ~28!

Finally, the absolute inverse temperatures follow from E
~13!.

e

ifferences
TABLE I. Important parameters for a discrete spectrum in the spherical truncation. The parenthesized numbers are the relative d
between the discrete results and the continuum approximation described by Eqs.~24!. All k’s are normalized tokmin .

m No. of modes ka k1 ā kb kmax

2 12 ~20.2146! 1.309 ~0.123 55! 1.517 ~0.038 896! 0.477 ~20.003 653 6! 1.528 ~0.035 098! 2
3 48 ~20.018 252! 2.069 ~0.124 04! 2.764 ~0.033 887! 0.431 ~20.009 457 7! 2.828 ~0.030 776! 4
4 196 ~0.009 797 6! 3.546 ~0.097 497! 5.219 ~0.017 103! 0.318 ~20.012 419! 5.617 ~0.014 927! 8
5 796 ~0.006 414 7! 6.312 ~0.074 295! 9.496 ~0.007 694 5! 0.172 ~20.009 888 3! 11.270 ~0.005 868 3! 16
6 3208 ~0.001 823 3! 11.477 ~0.058 483! 16.768 ~0.003 280 7! 0.072 ~20.005 591 1! 22.603 ~0.001 554 6! 32
7 12 852 ~0.000 997 66! 21.157 ~0.048 752! 29.489 ~0.002 064 6! 0.026 ~20.003 904! 45.230 ~0.000 662 21! 64
8 51 432 ~0.000 713 81! 39.437 ~0.041 868! 52.501 ~0.001 531! 0.008 ~20.003 003 5! 90.476 ~0.000 897 74! 128
2-6
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TABLE II. Important parameters for a discrete spectrum in the square truncation.

m No. of modes ka k1 ā kb kmax

2 24 ~20.5! 1.624 ~20.094 167! 2.028 ~20.221 62! 0.478 ~0.017 304! 2.041 ~20.2254! 2.828
3 80 ~20.25! 2.505 ~20.071 519! 3.588 ~20.196 49! 0.438 ~20.045 849! 3.674 ~20.206 51! 5.657
4 288 ~20.125! 4.149 ~20.061 972! 6.472 ~20.156 84! 0.343 ~0.1001! 6.940 ~20.178 57! 11.314
5 1088 ~20.0625! 7.216 ~20.060 305! 11.487 ~20.1246! 0.204 ~0.160 34! 13.472 ~20.158 58! 22.627
6 4224 ~20.031 25! 12.960 ~20.062 585! 20.013 ~20.107 32! 0.093 ~0.198 25! 26.536 ~20.146 88! 45.255
7 16 640 ~20.015 625! 23.768 ~20.066 453! 34.858 ~20.101 05! 0.035 ~0.217 27! 52.664 ~20.140 58! 90.510
8 66 048 ~20.007 812 5! 44.214 ~20.070 68! 61.545 ~20.1! 0.012 ~0.227 81! 104.920 ~20.137 32! 181.019
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Instead of specifyingĒ andV̄, it is often desirable in the
applications to specifically select a particular temperature
gime, e.g., a state with highly negativea. Then, one first
specifiesk instead of determining it by computing the rat
of known values ofĒ andV̄; one then proceeds as before
determineā and b̄. The ratio V̄/Ē5V/E is immediately
given byk2; if one requires absolute values ofE, V, a, or b,
either Ē or V̄ must be additionally specified.

C. Equal-temperature equilibrium

One situation in whichĒ and V̄ are known arises when
one considers the noise in the common initialization in wh
particles~of finite numberN! are distributed uniformly and
independently in the box. The particle density as a funct
of continuous positionx is n(x)5(,d(x2x(,)) ~the super-
script , denotes an arbitrary labeling of the particles!, where
on the lattice one must interpretd(xj) asD(xj), D(x) being
the periodicd function D(xj)8V21(ke

ik•xj obeying D(0)
5(DV)21. The mean particle density isn̄5V21*dxn(x)
5N/V and the power spectrum of the density fluctuati
dnk8nk2n̄ is readily determined to be

K Udnk

n̄ U2L 5H N21 ~kÞ0!

0 ~k50!.
~29!

In subsequent formulas, it will be understood that we c
sider onlykÞ0.

In Hasegawa-Mima dynamics the above density can
identified with the density of ion gyrocenters. From the g
rokinetic Poisson equation for adiabatic electrons~Appendix
A!,
06640
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~12¹2!w5n~x!/n̄, ~30!

one finds ^udwku2&5(11k2)22N21, so the quantity

Ek8 1
2 (11k2)^udwku2& @see Eq.~7b!# is

Ek5
1

2 S 1

11k2D 1

N
. ~31!

Upon comparing result~31! with Eq. ~9!, one sees that the
spectrum of uniform random particle noise has energy
enstrophy compatible with a canonical~and Gaussian! equi-
librium potential distribution with equal and positive invers
temperatures

a15b15N. ~32!

~Here, the 1 subscript reminds one that for this stateâ
5a1 /b151.) However, it is very important to realize tha
the full PDF of such noise isnoncanonical and non-
Gaussian. That is, the probability densityP0(w) of realizing
a set of Fourier amplitudesw is not proportional to

expS 2(
k

N~11k2!ÊkD , ~33!

even though the meanEk ~proportional to the second mo
ment of the potential! is correctly predicted by the Gaussia
result. The trueP0 is much more complicated because
higher-order correlations arising from the complicated no
linear form of the Poisson equation considered as a func
of the particle positions, and this observation has import
consequences for our subsequent application of the Mo
Carlo method. The correctP0(w) is computed in detail in
Appendixes B and C. Here, we merely point out that t
TABLE III. Important parameters for a discrete spectrum in the weighted truncation.

m No. of modes ka k1 ā kb kmax

2 15 ~20.2! 1.421 ~0.034 988! 1.777 ~20.111 48! 0.483 ~0.007 093 6! 1.789 ~20.116 12! 2.828
3 63 ~20.047 619! 2.298 ~0.012 321! 3.270 ~20.118 22! 0.448 ~0.0239! 3.343 ~20.127 85! 5.657
4 255 ~20.011 765! 3.952 ~20.015 118! 6.151 ~20.1128! 0.353 ~0.066 577! 6.570 ~20.132 32! 11.314
5 1023 ~20.002 932 6! 7.031 ~20.035 521! 11.201 ~20.102 24! 0.210 ~0.126 59! 13.083 ~20.133 55! 22.627
6 4095 ~20.000 732 6! 12.785 ~20.049 804! 19.765 ~20.096 126! 0.095 ~0.174 23! 26.137 ~20.133 87! 45.255
7 16 383 ~20.000 183 12! 23.603 ~20.059 945! 34.638 ~20.095 342! 0.035 ~0.203 03! 52.261 ~20.133 95! 90.510
8 65 535 (24.577731025) 44.057 ~20.067 39! 61.344 ~20.097 068! 0.012 ~0.220 02! 104.514 ~20.133 97! 181.019
2-7
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difference betweenP0 and a Gaussian distribution is int
mately related to the difference between the random-ph
approximation and the assumption of Gaussian statis
That is, the characteristic function~moment generating func
tion, or Fourier transform of the PDF5! for the random vari-
ablec8sinu, whereu is distributed uniformly in the interva
@0, 2p!, is Pk5J0(k), whereJ0 is the ordinary Bessel func
tion of the first kind. Such a variable has variance^dc2&
5 1

2 . The characteristic function for a Gaussian with varian
1
2 is exp(21

4k
2). Both this function andJ0(k) behave as 1

2 1
4 k21O(k4) for small k, but differ in the terms ofO(k4)

and higher. In other words the logarithm ofPk is the cumu-
lant generating function@26#:

ln Pk5(
l 51

` ~2 ik ! l

l !
Cl . ~34!

One readily obtains, for example,C25 1
2 and C452 3

8 ; in
general, the random-phase approximation has nonvanis
cumulants of all even orders. Ifc were Gaussian, on th
other hand, all cumulants higher than the second would v
ish. Unfortunately, ‘‘random phase’’ is often used synon
mously with ‘‘Gaussian’’@8#. Although in many applications
~especially to homogeneous turbulence@27#! this does not
matter, in general it is misleading. In the present applicati
the difference is crucial.

The precise energy per mode,

Ē5
1

2N K 1

11k2L
k

, ~35!

must be computed numerically as a function of the wa
number cutoffs, but it is important to note that the norm
ized quantities,

ā15b̄15 K 1

11k2L
k

, ~36!

are of the order of unity~independent ofN!. The associatedk
corresponds to that pointk1 in Fig. 1 where the curves
ā(k2) and b̄(k2) intersect, namely,

â51, ~37a!

k1
25

1

2 K 1

11k2L
k

21

21. ~37b!

The values of k1 and the associatedā15b̄15@2(1
1k1

2)#21 are tabulated in Tables I–III as functions ofm.

5An introduction ~with references! to statistical methods can b
found in Ref.@8#.
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III. DETERMINING AND SAMPLING FROM THE
PARTICLE PROBABILITY DISTRIBUTION

By definition, generating a particle state means samp
from the N-particle PDFP(N)(G). Two questions arise:~1!
What is P(N)(G)? ~2! Given P(N)(G), how does one con-
struct an appropriate sampling algorithm? As a trivial e
ample, suppose that the particles are to be distributed in
pendently and uniformly in a box of volumeV5Ld, whered
is the number of spatial dimensions. Independence me
P(N)(G)5P,P(1)(x(,)), and homogeneity impliesP(1)(x)
5V21, soP(N)(G)5V2N. A straightforward sampling algo
rithm consists of initializing each Cartesian component
thex(,) with random numbers drawn from a distribution un
form in @0,L).

Unfortunately, as we have remarked, the present prob
differs from the conventional one of equilibrium statistic
mechanics in that we are givenP(M)(w) ~the PDF of the
Fourier components! rather thanP(N)(G) ~the PDF of the
particles!. The wk’s and x(,)’s are related via the Fourie
transform of the gyrokinetic Poisson equation~30!,

~11k~n!2!wk~n!5
1

N (
,51

N

e2 ik~n!
•x~, !

~n51,...,M!,

~38!

where the factor ofN21 is equal to (n̄V)21, the V arising
from the Fourier transform convention~1a!. This compli-
cated nonlinear relation is a system of 2M real equations
involving dN Cartesian positions, where in the present c
culation d52. For 2M5dN or M5N one expects that it
should be possible, in general, to invert this relation and t
determineP(N)(G) in terms of the Jacobian of transforma
tion ~38!. However, it is very unusual thatM5N. Usually
the desire for low sampling noise dictatesN@M, so the
system is underdetermined; many particle~micro!states are
compatible with a given set of Fourier amplitudes~mac-
rostate!. Furthermore, even if the inversion were possib
the resultingP(N)(G) would be extremely complicated, so
suitable sampling algorithm would probably not be appare

As we have suggested, it is possible to avoid these d
culties by employing a Monte Carlo technique. Howev
before turning to that we will discuss an alternative possi
procedure that, although flawed, provides additional insi
and motivation.

A. An impractical but instructive procedure

The idea is based on two observations:~i! usually N
@M; ~ii ! P(M)(w) is Gaussian. Consider dividing the pa
ticle population intoG independent groups ofM particles
each, choosingN such thatN5GM. Then, consider theG
systems

~11k~n!2!ck~n!
~g!

5
1

N (
,Pg

e2 ik~n!
•x~, !

~n51,...,M; g51,...,G!, ~39!
2-8
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where(,Pg means sum over theM particles in groupg. If
one constructswk5(g51

G ck
(g) , thenwk obeys

~11k2!wk5 (
g51

G S 1

N (
,Pg

e2 ik•x~, !D ~40a!

5
1

N (
,

e2~ ik•x~, !!. ~40b!

Therefore, if thex(,) exist the Poisson equation will be sa
isfied. Furthermore, the variance ofwk is related to the vari-
ancesk

28^ucku2& by

^uwku2&5 (
g,g8

^ck
~g!ck

~g8!* & ~41a!

5(
g

^uck
~g!u2& ~41b!

5Gsk
2, ~41c!

where we exploited the assumption that the systems are
dependent. Therefore, the variance ofck is related in a
simple way to the desired variance ofwk .

The proposal is now to sample, for eachg, a collection of
M ck’s from an appropriate PDF~independent ofg! whose
variance issk

2. ~Appropriate care must be taken to satisfy t
reality conditions.! This is easy with the aid of standard n
merical software packages. Then solve the nonlinear sys
to obtainM x(,)’s. Thosex(,)’s are guaranteed to be com
patible with the given variance of thewk .

If the PDF for theck
(g) were Gaussian, then since the su

of Gaussian random variables is again Gaussian thewk
would be Gaussian and we would have constructed a v
particle realization. Unfortunately, Gaussianck

(g) are not per-
mitted. The modulus of Eq.~39! obeys

~11k2!uck
~g!u5N21U(

,Pg
exp~2 ik•x~, !!U<G/N. ~42!

If ck
(g) were sampled from a Gaussian distribution, the

would be a finite probability of obtaining ac such thatucu
.G/N. For suchc, the solution of Eq.~38! will not exist.
One must therefore sample from a bounded PDF. If t
obeys appropriate constraints, one can appeal to the ce
limit theorem to argue thatwk is asymptotically Gaussian fo
G@1. In practice, this may not be the regime of intere
since we often consider relatively small numbers of partic
per Fourier mode. Furthermore, practical difficulties are c
tain to ensue. For example, the usual methods for solv
nonlinear systems such as Eq.~39! involve some sort of
functional iteration. However, there are no guarantees
such iteration will converge unconditionally. Nonconve
gence may occur because of a poor initial guess, the e
tence of multiple solutions, and/or degeneracies associ
with the regular nature of the wave-number lattice. Althou
one might think of solutions for each of these difficulties,
is clear that the proposed method is at best cumbersome
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difficult to fully automate. Moreover, it suffers from the con
ceptual disadvantage that the realizations it generates are
tistically only approximately valid for fixed, finiteN.

Fortunately, the deficiencies of the procedure sugge
more fruitful line of approach. What is needed is a way
selectingN-particle states that are as random as possible c
sistent with the desired Gaussian statistics on the Fou
amplitudes, while guaranteeing unconditional convergenc
an acceptable sequence of states. These criteria are sat
by the Monte Carlo algorithm of MRRTT.

B. The MRRTT algorithm

Monte Carlo procedures@20,28,29# are often introduced
from the point of view of the evaluation of multidimension
integrals. Although we will not need to evaluate such in
grals explicitly, the application of computing integrals do
provide fundamental motivation. Thus, an integr
I 8*D dx g(x) over a domainD whose volume isV8*D dx
can be interpreted as an ensemble average over a PDFf (x)
that is uniform over the domain: f (x)5V21, I
5V*D dx g(x) f (x)5V^g&, where ^g&'n21( i 51

n g(xi), the
xi being sampled fromf (x). In statistical mechanics, th
prototypical application is to the computation of the e
semble average of some quantityQ(G) in the canonical en-
semble,

^Q&5Z21E dGQ~G!exp@2H~G!/T#, ~43!

whereZ8*dG exp@2H(G)/T#. The difficulties with straight-
forward Monte Carlo evaluation of this integral by samplin
from a uniform distribution, i.e., by identifyingg(x)
→Q(G)exp@2H(G)/T#, are twofold. First, the integrandg
varies rapidly withG and will be exponentially small for
almost all random points, so a possibly prohibitively lar
number of points would have to be sampled to ensure ac
racy. Second, the method requires the explicit numer
value of the partition functionZ, which can be very large and
difficult to evaluate.

A better procedure is to devise a way of sampling direc
from the canonical distributionP(G)5Z21 exp@2H(G)/T#;
then ^Q&'n21( i 51

n Q(xi). ~This is a special case of so
called importance sampling, as defined and discussed,
example, in Ref.@28#.! The algorithm of MRRTT accom-
plishes this by defining a Markov chain that is guaranteed
converge asymptotically toP(G).

In reviewing the algorithm, we follow the lucid expositio
of Kalos and Whitlock @28#. The elegant technique o
MRRTT is based on the fundamental Chapman-Kolmogo
equation for Markov processes, which can be written fo
PDF f that depends on a discrete timelike variablen and a
continuous spacelike coordinate or set of~abstract or gener-
alized! coordinatesX as

f n11~X!5E dYT~XuY! f n~Y!. ~44!

Here,T is an arbitrary conditional probability density. If w
introduce the transition probabilityS according to
2-9
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T~XuX8!5S~XuX8!1S 12E dYS~YuX! D d~X2X8!,

~45!

one is led to the conventional master equation@30#

f n11~X!5E dYS~XuY! f n~Y!1S 12E dYS~YuX! D f n~X!.

~46!

Here, the termS(XuY) describes the probability of leavin
the stateY; the parenthesized term is the conditional pro
ability of remaining in the state. Note thatS is not a true
conditional probability density since*dYS(YuX)Þ1.

It is easy to see that if an asymptotic distribution exis
namely, f n115 f n5 f , then

E dYS~XuY! f ~Y!5E dYS~YuX! f ~X!. ~47!

This is satisfied by the detailed-balance condition

S~XuY! f ~Y!5S~YuX! f ~X!. ~48!

The MRRTT algorithm and its variants correspond to p
ticular convenient choices ofS(XuY).

Specifically, the algorithm proceeds byproposinga tran-
sition from stateY to a new stateY8 generated from an
arbitrary conditional probabilityT0(Y8uY). The proposed
state is then tested against an acceptance criterionq and con-
ditionally accepted (X5Y8) or rejected (X5Y) in such a
way that detailed balance is satisfied. One has@28#

S~XuY!5A~XuY!T0~XuY!, ~49!

where A is the acceptance probability. We will follow
MRRTT in choosing

A~XuY!5min„1,q~XuY!…, ~50!

where

q~XuY!8
T0~YuX! f ~X!

T0~XuY! f ~Y!
. ~51!

Usually an algorithm is chosen such that

T0~XuY!5T0~YuX! ~52!

~although we will discuss a generalization in Sec. III C 1!. In
that case,

q~XuY!→ f ~X!/ f ~Y!. ~53!

One can then summarize the algorithm as follows. When
given probability density at the new proposed state is lar
than that at the old state@q(Y8uY).1#, the new state is
accepted unconditionally. Otherwise, the state is acce
with probability q5 f (Y8)/ f (Y). If one writes

f ~Y!}e2W~Y!, ~54!
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which is always possible for realW since f (Y) is a PDF
~hence non-negative!, then

q5e2DW, ~55!

where DW8W(Y8)2W(Y); thus proposed states wit
lower ‘‘energy,’’ DW,0, are accepted unconditionally. It i
easily shown that choice~50! satisfies detailed balance, an
asymptotic theorems on Markov chains guarantee thaf n
converges tof for reasonableT0 .

In practice, the proposed state is usually generated by
selecting one particle randomly, then examining the con
quences of changing its position by a random amountDx
5lj, where the Cartesian components ofj are sampled
from a distribution uniform in~21

2,
1
2! and l (<L) is a

parameter that is arbitrary, in principle. That is,

T0~XuY!5H l2d ~ uxi2yi u<l!

0 otherwise.
~56!

~The average acceptance probability and thus the rate of
vergence depend onl; see later discussion.! The effective
energyW is then evaluated at the proposed stateY8 and the
incrementDW is computed. IfDW,0, then the proposed
state is accepted as the next state in the Markov chain. O
erwise, another random numberp is drawn from a distribu-
tion uniform in @0, 1!. If p,q, whereq is defined by Eq.
~55!, the state is accepted (X5Y8); otherwise, the old state
becomes the next state in the chain (X5Y). The role ofp is
to ensure that states withq,1 are accepted with probability
q under a long-time average.

C. Application of MRRTT to particle initialization

The application of the MRRTT algorithm to the partic
initialization problem introduces both theoretical and comp
tational nuances.

1. Theoretical considerations

We will use the simple and efficient procedure describ
in the last paragraph of Sec. III B to generate a sequenc
particle statesG i ~and associated Fourier amplitudesw i).
However, because the target PDFP(M)(w) is couched in
terms of the Fourier amplitudes, not the particle state
rectly, one must be cautious. In particular, although for g
erating particle states one may chooseX5G, f (X)
5P(N)(G), the assertionP(N)(G)5P(M)

„w(G)… is not cor-
rect because it overlooks the nontrivial, nonlinear, many-
one relation between the random variablesG andw. We will
now explain how to take that relation into account. For n
tational brevity, we will henceforth writeP(N)(G)[P(G),
P(M)(w)[P(w). The underlying transition probability asso
ciated withG states will be writtenT0 , while the one asso-
ciated withw states will be writtenT0 .

It is important to realize that the particle states that
generated by the Markov chain have no dynamical sign
cance. For example, they do not contain the specific p
correlations that are associated with the Coulomb interac
and that arise from the dynamical relaxation on the fast ti
2-10
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scale during which Debye shielding is setup. There is
physical significance to the averages of arbitrary thermo
namic quantities over theG i or to relaxation rates toward
converged spectral equilibria. Because the only informat
built into the calculation is~the single time! P~w!, one is
allowed to average only functions ofw itself. Let A~w! be
such an arbitrary function. Most directly, one has

^A&5E dwP~w!A~w!. ~57!

Alternatively, for a compatibleP(G), one can write

^A&5E dGP~G!A„w~G!…. ~58!

The fundamental constraint relatingP~w! andP(G) is that

P~w!5^d„w2w~G!…& ~59a!

5E dGP~G!d„w2w~G!…. ~59b!

Since our only goal is to determine particle statescompat-
ible with P~w! ~but not necessarily the result of physical
realizable dynamics!, we have wide latitude in choosin
P(G). We will argue that a reasonable choice is

P~G!5
1

C

P~w!

P0~w!
, ~60!

whereC is a normalizing factor~the volume of theG space!
and P0 is the probability density of realizing the valuew
from auniformly distributed, statistically independentcollec-
tion of particles. Note that the explicit normalization consta
C is never needed in the MRRTT algorithm.

To arrive at Eq.~60!, we argue that since onlyw averages
are of interest, one can chooseP(G) such that it depends o
G only throughw: P(G)5F(w) for some functionF. In the
spirit of information theory@31#, this is the unique choice
compatible with the lack of any further information or co
straints. Without loss of generality, we can write

P~G!5P~w!/Q~w!, ~61!

whereQ~w! is to be determined. Upon inserting represen
tion ~61! into Eq. ~59b!, one obtains

P~w!5E dG
P„w~G!…

Q„w~G!…
d„w2w~G!… ~62a!

5
P~w!

Q~w!
CE dG

1

C
d„w2w~G!…, ~62b!

or, upon cancelingP~w! from both sides and rearranging,

Q~w!5C^d„w2w~G!…&0 , ~63!
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where ^¯&0 means the average over the PDFP0(G)
5C21, i.e., over a distribution of uniformly distributed, sta
tistically independent particles. Thus,Q(w)5CP0(w) and
one recovers Eq.~60!.

Form ~60! is a generalization of the well-known resu
that if y(x) is a monotonic function ofx, then uPX(x)dxu
5uPY(y)dyu, or PX(x)5PY(y)/udx/dyu. This can be writ-
ten asPX(x)5PY(y)/P0(y), whereP0(y)5udx(y)/dyu. By
setting PX(x)5const, one sees thatP0(y) is the PDF ofy
associated with a uniformx distribution. In the present ap
plication, one may identifyx→G, y→w; however, one can-
not simply introduce a Jacobian]G/]w because the relation
betweenw and G is not one to one. Form~60! reflects a
particular, minimally constrained way of handling the und
determinism.

So far we have concentrated on generating particle st
G i that are compatible with the givenw distribution. An al-
ternate approach that leads one to the same PDF~60! is to
directly consider a Markov chain ofw states. Now we iden-
tify X→w, f (X)→P(w). One has

q~w8uw!5
T0~wuw8!P~w8!

T0~w8uw!P~w!
, ~64!

whereT0(w8uw) is the conditional probability of achieving
w8, givenw, that is associated with the underlying algorith
for generating newG states. The functionT0(w8uw) is non-
trivial. However, one may use the definition of condition
probability to write in complete generality

T0~w8uw!5T0~w8,w!/P0~w!, ~65!

whereP0(w) is the PDF for realizingw at any step in the
chain. The great appeal of the MRRTT method is that
joint probability T0(w8,w) need never be computed explic
itly since the ratio of theT0’s required in Eq.~51! can be
written as

T0~wuw8!

T0~w8uw!
5

T0~w,w8!/P0~w8!

T0~w8,w!/P0~w!
5

P0~w!

P0~w8!
. ~66!

Thus, Eq.~64! becomes

q~w8uw!5
P~w8!/P0~w8!

P~w!/P0~w!
, ~67!

where all the potentials are to be computed in terms of
random particle positions.

From the point of view of generatingw statistics,P0 is not
unique; one must provide some information about how
underlyingG states are generated. The arguments leadin
Eq. ~63! show that the minimally biased choice forP0 is the
PDF associated with an independent, uniform distribution
particles. This important function is considered in Appe
dixes B and C. There asymptotic methods are used to s
that for largeN

P0~w!}exp@2NC~w!#, ~68!
2-11
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where the exponentC satisfies6

C~w!'
1

2 (
k

~ ēk1 1
4 ēk

2! ~69!

for ēk8(11k2)2uwku2!1 @see Eqs.~C12! and~C69!# and is
determined from an implicit algorithm for larger fluctuatio
levels @see Eq.~C66!#. In the limit N→`, for which the
noise level approaches 0,ē is very small, the quartic~in uwu!
correction in Eq.~69! is negligible, and one sees that th
result reduces to the Gaussian approximation~33!; however,
for finite N the result is substantially more complicated. No
that even thoughēk!1, Nēk5O(1), so P0 is a nontrivial
function that is not well approximated by one.~See Fig. 9 for
a numerical confirmation of this remark.!

Although the true form ofC is involved, its qualitative
role in the Monte Carlo algorithm can be understood by c
sidering the lowest-order result

P0~w!}expS 2(
k

N~11k2!ÊkD . ~70!

From the point of view of the general method of MRRT
which attempts to converge to a distribution functionf (X),
the effective PDF in the present problem is

f ~X!}P~w!/P0~w! ~71a!

'expS 2(
k

@~a1bk2!2N~11k2!#ÊkD .

~71b!

For the special case of uniform, independent states,
which we have shown in Sec. II C thata5b5N, the lowest-
order contribution fromP0 cancels the (a1bk2) term, leav-
ing one withf (X)'const andq51. In this approximation all
states are accepted, which demonstrates a necessary c
tency: to the extent that the particle states can be consid
to be Gaussian~N sufficiently large!, the algorithm need ‘‘do
no work.’’

2. Computational algorithm

In addition to the appearance of the reference distribu
P0 , the unusual elements in the present application are
the potentials are spatiallynonlocal functions of the micro-
scopic particle stateG and that the Fourier spectrum is r
solved only to a finitekmax, whereas the particles may oc
cupy positions distributed continuously inV. Given a
proposed stateG8, we proceed~in principle! as follows. The
particles are collected onto the nearest lattice pointfor the
purpose of computing the potentials. The resulting density
distribution is~discrete-!Fourier transformed and the pote
tial is determined from the solution of Poisson’s equat

6The factor of1
2 in Eq. ~69! results from converting the sum of th

M88
1
2 M terms of lnP0(w) @Eq. ~B14!# to the sum over allM

modes.
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~which is trivial in Fourier space!. The invariantsÊ(G8) and
V̂ (G8) are then computed, as is the change

DW5@Ŵ ~G8!2Ŵ 0~G8!#2@Ŵ ~G!2Ŵ 0~G!#, ~72!

whereŴ 0(G)8NC„w(G)… and

Ŵ ~G!8aÊ~G!1bV̂ ~G!. ~73!

Finally, the stateG8 is accepted or rejected according to t
MRRTT criterion withq5exp(2DW).

The procedure as just described is not yet optimal
machine computations since it seems to require a tim
consuming 2D Fourier transform at each step in the ch
~which can be very long!. That is unnecessary, howeve
since only one particle is moved per step and Fourier tra
formation is a linear operation. Because we use a near
grid-point algorithm to collect the particles onto the spat
lattice, it is clear that on the lattice the density of the pr
posed stateG8 will either be identical to that ofG or will
differ from it by a deficiency of one particle at the origin
point xj and an excess of one particle atxj8 . We can therefore
calculatewk8 by adding towk the potential associated with
test particle atxj8 and subtracting that associated with a te
particle atxj . The potential increment due to a test particle
xj is @cf. Eq. ~38!#

wk
~ j !5@~11k2!N#21 exp~2 ik•xj !; ~74!

thus, the calculation ofwk8 involves the computation of jus
two complex exponentials, or two cosines and two sines
principle, evaluation of such quantities must be done at e
step. However, run time can be decreased at the expen
memory by computing all of the possible potentials~74!
once at the beginning of the run and storing them. Sin

there areMx(
1
2 M y11) independent complex Fourier mode

and M tot lattice points, one must store approximatelyY

52( 1
2 M tot)(Mtot)5Mtot

2 real numbers. Usually, we conside
Mx52m for reasonably smallm, so Y(m)524m. Runs with
m56, or a 64364 lattice, reside comfortably on deskto
workstations. For the goal of testing gyrokinetic codes, th
is no reason to work with larger grids.

In designing a satisfactory Monte Carlo run, it is impo
tant that the ratio of acceptances to rejections be neither
small nor too large. If the ratio is small, so that almost
states are rejected, then one gains little new information
each step, the steps are highly correlated, and the rat
convergence to the asymptotic distribution may be proh
tively slow. The same remarks pertain to the other extre
where almost all states are accepted. Common lore sugg
an acceptance rate of about 50%. In principle, this rate
be calculated analytically as a function of the paramete
e.g.,$M, N, l, k, E%. Those results are somewhat tedious
detail, being expressable as infinite Fourier integrals over
characteristic function, which itself is known only as an i
finite series of Bessel harmonics; our theoretical work in t
area is incomplete. In practice, we proceed as follows. F
we choose a temperature regime by specifying an approp
2-12
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k. Next, we set the overall height of the target spectrum, e
by forcing the intensity of the longest- or shortes
wavelength mode to be a specified percentage of the re
ence noise level. Finally, with the aid of several short tr
runs we adjustl, the size of the basic cell for the transitio
probability T0 , such that the rejection rate is'50%.

IV. EXAMPLES OF INITIALIZATION

The preceding considerations have been implemented
computer code whose input consists of the parameters$m, N,
l, k, E% and whose output consists of a succession of part
states that sample the canonical ensemble~9!.

The initial particle state is arbitrary, in principle. In add
tion to the uniform, independent initialization already me
tioned, we also consider the well-known Fibonacci ‘‘qu
start’’ defined by~Ref. @18#, and references therein!

xr5S 2r 11

2N DL, ~75a!

yr5an21xr mod L, ~75b!

wherer 50, 1,...,N21; n.1 is an arbitrary integer param
eter;an is thenth Fibonacci number defined by

a050, ~76a!

a151, ~76b!

an5an211an22 ; ~76c!

andN5an . To expedite easy comparison of the random a
quiet starts, we generally chooseN to be a Fibonacci number
Unless we specifically state otherwise, we usen517 (N
51597).

The spectrum is resolved on a lattice corresponding
m54 (Mx5M y516). This number of modes reasonably a
proximates a continuum in wave-number magnitude, bu
sufficiently small that desktop workstation CPU time is n
exorbitant. The results presented here correspond to a
size of L543.3 or kmin'0.145,kmax'1.64. These number
are representative of other medium-size simulations of
Hasegawa-Mima and similar equations, but their precise
ues are not critical for the application of testing relaxation
appropriate equilibria.

In the following sections, we will present spectral info
mation via 2D graphs ofEk vs k8uku. On these graphs th
noise level for the special uniform, independent particle s
‘‘1’’—i.e., Ek,18@2N(11k2)#21—is shown by a dashed
line; the theoretically expected spectrum,Ek5@2(a
1bk2)#21, is shown by a solid curve. At any step in th
Markov chain, the instantaneous levelsÊk’s are indicated by
a scatter plot of small plus signs. The averages of theÊk’s
over the chain up to that point are indicated by a scatter
of larger squares that in some cases is superimposed ove
instantaneous data. It is convenient to measure time in u
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of cycles, where a cycle is defined to beN steps.~On the
average, each particle is moved once in the course o
cycle.!

It should be noted that if the number of particlesN is too
small relative to the number of retained Fourier amplitud
it may not be possible to successfully generate arbitrary F
rier spectra~considerN51, for example!. In such cases, the
Monte Carlo algorithm fails to converge, or converges
unusual spectra withŪÞ1. The time dependences ofU and
the running time averageŪ are sensitive monitors of the
convergence of the algorithm.

A. The reference noise spectrum

In the first experiment, we verify that the Monte Car
code properly converges to the preferred noise spectrum
a5b5N, specified byk1 . ~Upon referring to Table III, we
see thatk156.151 for the present parameters.! We show the
initial random Fourier intensities for a random start in Fig
and for a Fibonacci start in Fig. 4. In Figs. 5–7, we sho
snapshots from a Fibonacci start of the Markov chain at
'1, 20, and 200, respectively. Convergence to the appro
ate distribution is seen clearly with the expected 1/At rate.
The gross behavior of the instantaneous amplitudes in
final state is qualitatively similar to the initial scatter plot fo
the random start~Fig. 3!, as it should be.

FIG. 3. Initial spectrum for a random start witha5b5N
51597.

FIG. 4. Initial spectrum for a Fibonacci start witha5b5N
51597.
2-13
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Convergence to the proper valueŪ51 is illustrated in
Fig. 8. Convergence is already recognizable from the fluc
ating data in times of the order of several cycles. For t
particular case, the running time average has saturated
correct value after about 10 cycles. Convergence wit
about 10–25 cycles is typical for the runs presented h
Although not graphed here,Û continues to fluctuate aroun
one for the duration of the run; no tendency toward insta
ity is seen.

Although we do not display the graphics here, it is easy
check that the particle positions have been thoroughly mi
after a small number of cycles.~Color coding can be used t
emphasize that the particles have not just moved slig
from their initial positions.! A comparison of the final par
ticle states with a typical set of random initial conditio
shows no qualitative differences. The collected statis
verify that all states were accepted for this case, in agreem
with the argument presented at the end of Sec. III C 1.

A scatter plot of the exponentsU0 for the previous run is
shown in Fig. 9. Because the values areO(1) but are not all
equal, this figure emphasizes thatP0(w) is a nontrivial func-
tion, as was remarked after Eq.~69!.

In Fig. 10, we show that the algorithm has no troub
generating equal-temperature states with intensity one-t
of the reference noise level.

B. Enstrophy equipartition

Another reference case of importance is the enstrop
equipartition caseâ50 (k5ka). Although this is not a

FIG. 6. Reference-case spectra fort520.

FIG. 5. Reference-case spectra fort51.
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negative-temperature state~it corresponds toa50 or an in-
finite energy temperature!, it is qualitatively similar to states
of negativea ~regime I! in that the long-wavelength mode
are excited to relatively high levels. Working with a margin
state such as this affords a good consistency check of
software routines that relatea, b, andk. Specifying ak of
3.952 as indicated in Table III should lead to ana of 0, as
indeed it does to within numerical roundoff error. For th
case, we consider two absolute levels. Define the paramef
to be the ratio between the target intensity and the refere
noise level for the longest-wavelength mode. We first co
sider f 55. The state after 400 cycles is shown in Fig. 11.
one expects, convergence is dominated by the time for
longest-wavelength modes to attain equilibrium. Note t
this case demonstrates that there is no difficulty in excit
some modes to a superthermal level while suppressing ot
to a subthermal level.

Next we considerf 510, thereby doubling the target in
tensity from the previous case. As shown in Fig. 12, this r
transiently attains a quasi-steady-state that well approxim
the expected result~Fig. 13!; however, after about 15 cycle
an instability sets in. That this instability is of the longes
wavelength modes can be seen in Fig. 14.

Experience shows that such instabilities are associa
with an inadequate number of particles. A precise theoret

FIG. 7. Reference-case spectra fort5200.

FIG. 8. Initial behavior of the convergence to the noise sta

Thin solid line, dataÛ82(aÊ1bV̂) sampled every 0.05 cycles
thick solid line, running time average.
2-14
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criterion for the threshold of instability would be very valu
able, but is left for future work. For lack of space, we w
not show the successful result of stabilizing the present
by increasingN, but similar behavior is manifested by th
runs presented in Secs. IV C and IV D. Note that cases w
too small N need not always be unstable; sometimes
chain converges, but to states withŪÞ1. We do not fully
understand the significance of those states.

C. Negativea

Now we generate a true negative-temperature state
somewhat arbitrarily choosingk51.5, a value deep in the
negative-a regime I. Such equilibria have the longes
wavelength modes excited to relatively large levels, such
would ~qualitatively! result from an inverse energy cascad
The spectrum after 4800 cycles is shown in Fig. 15. F
these parameters, the longest-wavelength modes have
fully converged; however, there is no tendency toward ins
bility.

D. Negativeb

In the final experiment, we generate a state of negativb
~regime III!. We arbitrarily choosek510. For the standard
parametersm54, n517, the algorithm appears to be we
converged att5100, but subsequently exhibits an instabili

FIG. 10. Equal-temperature states with intensity one-tenth of
reference noise level~dashed line!.

FIG. 9. Scatter plot of the exponentsU0 for the reference case
plotted in Figs. 5–8.
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of the shortest-wavelength mode. Increasingn to 19 removes
the instability; a well-converged spectrum is shown in F
16.

V. DISCUSSION

The calculations presented here meld two of the princi
avenues to the study of nonlinear phenomena in plasma
tems that exhibit strongly fluidlike behavior:~gyro!fluid
simulation with Fourier amplitudes and kinetic simulatio
with particles~or gyrocenters!. Each has its strengths, but th
two approaches should agree exactly in the inviscid,
driven limit in which collisional dissipation and the Landa
resonance are ignored. Then the spectrum predicted by e
approach should nonlinearly relax to the prediction of t
appropriate canonical ensemble. The Hasegawa-Mima e
tion is arguably the simplest nonlinear equation with r
evance to magnetized plasma physics. Nevertheless, its
nonical behavior~for truncated Fourier spectra! is entirely
nontrivial, including the existence of negative-temperatu
states. In this paper, we showed how to construct part
realizations compatible with those Fourier spectra by usin
generalization of the well-known Monte Carlo algorithm
Metropoliset al. @19#. The numerical aspects of the calcul

e

FIG. 11. Enstrophy-equipartition run (a50) with f 55 ~snap-
shot att5400).

FIG. 12. Enstrophy-equipartition run withf 510, demonstrating
quasisaturation but a long-term instability. Thin line, data; th
line, running time average.
2-15
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tion are straightforward. However, the calculation of the no
trivial PDF P0(w) ~the probability density of obtaining th
set of Fourier amplitudesw from a uniform distribution of
statistically independent gyrocenters; see Appendix B! pre-
sents an interesting problem in asymptotics, as describe
Appendix C.

A. Application to particle simulations

In the proposed application to particle simulations, iss
arise concerning both the interpretation of averaging pro
dures as well as the practical implementation of the requ
fluid limit.

1. Averaging procedures

We first consider the interpretation of averages over
chain of states. In particular, we pose the following qu
tions: ~i! What is the role of a single microstate?~ii ! Does an
ensemble average yield any additional information?

To answer these questions, one must be precise abou
distinction between time and ensemble averages. Letr label
one of R realizations, each initialized by a random samp
drawn from the canonical distribution with specifiedE and
V. Of course,Êk

(r )(t50)8Ẽk
(r )ÞEk . Each realization will

FIG. 14. Long-time spectra for the unstable case correspon
to Fig. 12. The long-wavelength amplitudes have drifted sign
cantly above the target curve~solid line!.

FIG. 13. Enstrophy-equipartition spectra in the quasisatura
regime of Fig. 12.
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evolve conserving its ownÊ5Ẽ andV̂, and one expects tha
the action of the nonlinear terms will~on the average! read-
just Êk(t) to the canonical spectrum corresponding toÊ ~not
E!. Within one realization, the only sensible average to p
form is the time average; one expects

Ek
~r !~ t !5Ẽk

~r ! , ~77a!

Ê~r !~ t !5Ẽ~r !. ~77b!

Demonstration of correct time-averaged relaxation to
variety of positive- and negative-temperature canoni
states is probably the most stringent test that can be
formed on nonlinear simulation modules. Note that it is u
necessary to perform a new Monte Carlo run before each
of a simulation code or sequence of code updates. A
representative cases can be computed once and stored in
files; they can then be used repeatedly in relaxation te
Although those will be restricted in the numbers of partic
N and Fourier amplitudesM, that is probably not crucia
because it is difficult to imagine software bugs that wou
not show up with a randomly chosenN andM.

In order to demonstrate convergence to the specifiedE, a
true ensemble average must be performed:

g
-

d FIG. 15. A state of negativea. k51.5; f 52.5; n519 (N
54181).

FIG. 16. A state of negativeb. k510; n519 (N54181).
2-16



no
ko
or
e

ion
o
t

p
ui
a
te
tic
id

in

c

th

s

ok

al
.

w-
ze

ap

th
o

o-
In
e

a-

-
,
u

on
of
i

se

red;
ss

lo

pli-
for

w-
r-

-
s,
of

.

tial
ics.
ce
o
-

x-

and
sur-

of

ng
ri-
ier-
the
ix
ua-

ny
ical
by
2-

elf-
he
sm

be

MONTE CARLO SAMPLING OF NEGATIVE- . . . PHYSICAL REVIEW E 67, 066402 ~2003!
E5^Ẽ&'
1

R (
r 51

R

Ẽ~r !. ~78!

To reduce the variance of this calculation, one should
identify realizations with successive states along the Mar
chain but rather with states separated by at least one c
lation length. It is unlikely that such an experiment will b
performed routinely because it involves many simulat
runs and it is improbable that a bug causing erroneous c
vergence at this stage would not have been caught by
tests on individual realizations.

2. Practical considerations

The present paper presents the theory of generating
ticle microstates compatible with the nontrivial thermal eq
libria of particular nonlinearfluid equations. Of course,
complete particle simulation does not approximately in
grate a fluid equation, but rather a nonequilibrium kine
equation. Therefore, achieving the inviscid, undriven flu
limit may not be trivial in practice.

In general, the physics contained in kinetic equations
cludes wave-particle interactions~Landau damping!. To at-
tain the fluid limit, one must turn off the Landau resonan
by setting the parallel wave numberki to zero. That is easy
in unsheared slab geometry but not necessarily trivial in
presence of magnetic shear, which must be set to zero.

If one is to attain the Hasegawa-Mima limit, one mu
enforce adiabatic electrons andTi50. Strictly speaking,
adiabatic electron response is not compatible withki50, so
one cannot merely employ a two-species code withki50.
Rather, the electron response must be built into the gyr
netic Poisson equation~as in Appendix A!, and only the ions
should be integrated explicitly. Usually those ions are initi
ized by sampling from a Maxwellian velocity distribution
SettingTi50 in that distribution may cause problems; ho
ever, it should be adequate to simply use a small but non
ratio of Ti /Te .

One should also note that thermal-equilibrium spectra
ply only to homogeneous simulations~with, of course, no
macroscopic linear drive or damping!. Turning off linear
drive is easy in two-scale formulations that incorporate
effects of background profile variations into constant
slowly varying parameters; it may be more difficult for gl
bal simulations with nonperiodic boundary conditions.
any event, such simulations are not homogeneous, so ar
expected to attain true thermal equilibrium.

In modern simulation practice the full gyrokinetic equ
tion is not solved directly. Rather, the so-calledd f algorithm
is employed, in which only the deviationd f from a Max-
wellian is integrated explicitly~by the method of character
istics!. A description of that intrinsically low-noise method
references to the original work, and some theoretical disc
sion of sampling noise can be found in Ref.@32#. Although
the basic method would seem to be well suited to simulati
of thermal-equilibrium fluid noise, the long-time behavior
d f simulations may be unstable in the collisionless lim
~which is required for the Hasegawa-Mima spectra discus
in the present paper!. The basic problem with that limit~un-
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bounded increase of an entropylike function! was elucidated
in Ref. @33#, and a possible solution~involving the use of a
numerical ‘‘thermostat’’! was advanced in Ref.@6#. However,
further research on both theory and technique is requi
therefore, we leave the demonstration of collisionle
Hasegawa-Mima thermal-equilibrium spectra in ad f simu-
lation to future work.

Note that a principal shortcoming of all Monte Car
methods is the slow 1/At rate of convergence. This limits to
modest values the number of particles and Fourier am
tudes that can be treated. This need not be an issue
benchmarking purposes, however, particularly for the lo
noised f methods that work well with small numbers of pa
ticles.

B. Final remarks

Although our original motivation was the flexible initial
ization and robust testing of gyrokinetic simulation code
the physics and algorithms we have discussed may be
more general interest. Thed f algorithm mentioned in Sec
V A 2 is itself at core a Monte Carlo sampling technique@32#
that can be used for integrating a variety of continuum par
differential equations, possibly unrelated to plasma phys
Gyrocenter motion has much in common with 2D turbulen
as well as the dynamics of point vortices moving in tw
dimensions@34#, which can be treated both with particle
simulation techniques@35,36#, fluid approaches~Ref. @37#,
and references therein!, and specially designed laboratory e
periments~Ref. @38#, and references therein!. The way of
handling the many-to-one relation between the particles
the Fourier amplitudes, as well as the statistical issues
rounding the determination of the basic PDFP0(w), may be
of interest in a variety of contexts, including the use
maximum-entropy methods in pattern recognition@39#. Fi-
nally, there should be no problem of principle in extendi
the calculations to problems with other numbers of inva
ants, such as the single energy invariant of the 3D Nav
Stokes equation, the single generalized invariant of
Terry-Horton equation~see the final paragraph of Append
A!, or the four invariants of the Hasegawa-Wakatani eq
tion @8,40#.
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APPENDIX A: GYROKINETIC DERIVATION OF THE
HASEGAWA-MIMA EQUATION

In an attempt to make the manuscript reasonably s
contained, we present here a brief derivation of t
Hasegawa-Mima equation using the gyrokinetic formali
@9#. Further details and discussion of the equation can
found in the original references@11,22#, in Bowman’s disser-
tation @23#, and in Ref.@41#.
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In a set of dimensionless variables in which density
normalized to the mean densityn̄, lengths are normalized to
the ‘‘sound radius’’rs8ca/vci @whereca is the sound speed
(Te /mi)

1/2 andvci is the ion gyrofrequencyqiB/mic], times
are normalized toLn /ca ~where Ln is the density scale
length!, and the electrostatic potential is normalized
(Te /e)(rs/Ln), the continuity equation for the perturbed io
gyrocenter densityni

G is

]ni
G

]t
1V*

]w

]y
1VE•“ni

G50. ~A1!

Here, the diamagnetic velocityV* 8(cTe /eB)Ln
21 is unity

in the present units, but is written symbolically for emphas
the dimensionlessE3B velocity is VE8 ẑ3“w. The poten-
tial is determined by thequasineutralitycondition, appropri-
ate for low-frequency, long-wavelength fluctuations:

¹'
2 w52~ni

G2ne
G!. ~A2!

~One hasne
G'ne because the electron gyroradius is ve

small.! The Laplacian term describes the ion polarizati
charge densityrpol. @The conventional Laplacian in Pois
son’s original equation isO(lD

2 /rs
2); this is small in the gy-

rokinetic ordering@15# and is neglected in the approximatio
of quasineutrality.# This is defined by the continuity equatio

] tr
pol1“• jpol50, ~A3!

where the ion polarization current isjpol5niqiV
pol, with @42#

Vpol5
1

vci

]

]t S cE'

B D . ~A4!

In the approximation of Hasegawa and Mima, the elect
response is assumed to be adiabatic@48#:

ne5w. ~A5!

One then obtains the simplest form of the gyrokinetic Po
son equation

~12¹'
2 !w5ni

G . ~A6!

If one substitutes this expression forni
G into the continuity

equation~A1!, one is led immediately to Eq.~5! of the text.
When the more realistic case of nonadiabatic electron

sponse is considered, both the linear and nonlinear terms
modified. The resulting equation is called the Terry-Hort
equation@22#. It conserves just one invariant@^(dni

G)2&, es-
sentially the sum of the energy and enstrophy#, so its equi-
librium statistical mechanics differs from that of th
Hasegawa-Mima equation and, in fact, is quite nontriv
Nevertheless, we feel that our fundamental concerns of t
ing gyrokinetic simulations and exploring the generation
two-temperature equilibria are better served by concentra
on the simpler Hasegawa-Mima equation, so we do not c
sider the Terry-Horton equation further in this work.
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APPENDIX B: CALCULATION OF THE FUNDAMENTAL
PROBABILITY DENSITY FUNCTION P0„w…

In this appendix, we will use the notationw instead ofw
to indicate the set of Fourier amplitudes~more specifically,
the set of the real and imaginary parts of eachwk), reserving
w for the magnitude ofw. The discussion in Sec. III show
that the quantityP0(w) plays a crucial role in the propose
Monte Carlo method. Again,P0(w) is the PDF for the Fou-
rier amplitudes of the potentials arising from an ensemble
independent gyrocenters, each of which is distributed u
formly.

In the calculations to follow, we will prefix formula num
bers from Abramowitz and Stegun@43# with AS, and prefix
ones from Gradshteyn and Ryzhik@44# with GR.

1. General expression

To computeP0 , one may recall the standard result, wr
ten first for a single real random variablec̃, that

P~c!5^d~c2c̃ !&. ~B1!

Of course, when thê¯& average is expressed in terms
P(c) itself, Eq.~B1! is a tautology. However, when the ran
dom properties ofc̃ are expressed in terms of another und
lying variable X[ x̃ whose density isPX(x), Eq. ~B1! is
nontrivial:

P~c!5E dxPX~x!d„c2c̃~x!…. ~B2!

It is often convenient to work with the Fourier transform
this result, i.e., to compute the characteristic function

Pk5E dce2 ikcP~c!5^exp@2 ikc̃~ x̃!#&. ~B3!

This average is analytically tractable if the relationship b
tweenc̃ and x̃ is sufficiently simple.

To apply this procedure to the present problem, we w
formally

P0~w!5^d~w2w̃!&, ~B4!

where the ensemble average is to be taken over the ense
of independent, uniformly distributed gyrocenters. More e
plicitly,

P0~w!5K )
m51

M8

d~w r
~m!2w̃ r

~m!!d~w i
~m!2w̃ i

~m!!L ~B5a!

5E dp~1!

~2p!2

dp~2!

~2p!2 ¯
dp~M8!

~2p!2

3 )
m51

M8

eip~m!
•w~m!

^e2 ip~m!
•w̃~m!

&, ~B5b!

where
2-18
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p~m!8S pr
~m!

pi
~m!D , w~m!8S w r

~m!

w i
~m!D , ~B6!

and m ranges over allM8 independent Fourier modes
w(m)[wk(m). If one defines, for anyk, ak8@(11k2)N#21,
then the gyrokinetic Poisson equation that relates the po
tials to the random gyrocenter positions is, from Eq.~38!,
w̃k5ak( j 51

N e2 ik• x̃( j ). One thus has

e2 ip•w̃5expS 2 iakpr (
j 51

N

cos~k• x̃~ j !!D
3expS iakpi(

l 51

N

sin~k• x̃~ l !!D ~B7!

or

e2 ip~m!
•w̃~m!

5)
j 51

N

Rm
~ j !~wr

~m!!Im
~ j !~wi

~m!!, ~B8!

wherew8ap and

Rm
~ j !~wr

~m!!8 (
nr52`

`

Jnr
~wr

~m!!e2 inrp/2einrk
~m!

• x̃~ j !
,

~B9a!

Im
~ j !~wi

~m!!8 (
ni52`

`

Jni
~wi

~m!!einik
~m!

• x̃~ j !
. ~B9b!

Thus, the Fourier transform ofP0(w) is

P0~p~1!,...,p~M8!!5K )
m51

M8

)
j 51

N

Rm
~ j !~wr

~m!!Im
~ j !~wi

~m!!L .

~B10!

Note that, in general, the ensemble average does not c
mute with the product symbols.

To simplify Eq. ~B10!, we first recall that the gyrocenter
are independent. Therefore,

P0~p~1!,...,p~M8!!5)
j 51

N K )
m51

M8

Rm
~ j !~wr

~m!!Im
~ j !~wi

~m!!L .

~B11!

It is not hard to see that for uniformly distributed gyrocente
the Fourier amplitudes are independent. Th

P0(p(1),...,p(M8))5)m51
M8 P0(p(m)), where

P0~p!8)
j 51

N

^R~ j !~wr !I~ j !~wi !& ~B12a!

5^R~1!~wr !I~1!~wi !&
N, ~B12b!

since each gyrocenter has identical statistics. One has
any gyrocenter,
06640
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^R~wr !I~wi !&5 (
nr ,ni

Jnr
~wr !e

2 inrp/2Jni
~wi !

3^exp@ i ~nr1ni !k• x̃#& ~B13a!

5(
n

Jn~wr !e
inp/2Jn~wi ! ~B13b!

5J0~w!, ~B13c!

where in the last step we employed Graf’s addition theor
~AS 9.1.79!. Finally, then,

P0~w!5 )
m51

M8

P0~w~m!!, ~B14!

where~now writing w instead ofw(m) for convenience!

P0~w!8E dp

~2p!2 eip•wJ0
N~ap! ~B15a!

5
1

2p E
0

`

pdpJ0~wp!J0
N~ap!, ~B15b!

where w8uwu. Note that P0(w) is the PDF for thetwo-
component vectorw of real and imaginary parts; it is norma
ized such that*dwP0(w)5*dw rdw i P0(w)51. However,
since by symmetry the result depends only onw, we will
frequently quote the magnitude PDFP0(w), whereP0(w)
52pwP0(w). If one changes variables to

p̄8p/~11k2! ~B16!

and defines

w̄8~11k2!w ~B17!

~note thatw̄[ni
G), then one obtains the final result

P̄0~ w̄;N!5~2pw̄!P̄0~w̄;N!, ~B18a!

P̄0~w̄;N!8E
0

`

p̄dp̄J0~ uw̄u p̄!J0
N~ p̄/N!. ~B18b!

It is useful to note that result~B18b! can also be written in
the interesting form

P̄0~w̄;N!5K dS w̄1(
j 51

N

k̄ j D L
k̄

, ~B19!

where thek̄’s are effective wave vectors~not to be confused
with the k labels of the Fourier amplitudes! satisfying

uk̄ j u5N21, ~B20!

and ^¯& k̄ denotes an average over all possible orientati
of the k̄’s.
2-19
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2. Exact results

The geometrical interpretation~B19! leads immediately to
some interesting exact results. First, one has the impor
conclusion that integral~B18b! vanishes identically ifw̄
.1, for in this case it is impossible to form a closed (N
11)-sided planar figure~possibly with crossed lines! with N
of the sides constrained by Eq.~B20!:

P̄0~ w̄ ![0 ~ w̄.1!. ~B21!

Next, for N51 andN52 formula ~B18b! can be com-
puted exactly. ForN51, it is clear from the geometrica
interpretation that the integral vanishes unlessuw̄u51; since
the result is independent of orientation one concludes th

P̄0~ w̄;1!5d~w̄21!. ~B22!

Consistently, this is just the joint PDF for a pair of rando
variables c18cosu and c28sinu for u distributed uni-
formly in @0, 2p!: P(c1 ,c2)5(2p)21d(c21), where
c8(c1

21c2
2)1/2. This is just the situation described by th

caseN51, where we identifyu with the position of the
single gyrocenter and$c1 ,c2% with the real and imaginary
parts of the potential.

For N52, the effective wave vectors are constrained
form a triangle of areaA(w̄,k̄1,k̄2), where

A~k0 ,k1 ,k2!5 1
2 uk03k1udk01k11k2 ,0 . ~B23!

In the present case one hask15k25 1
2 , so from the simple

geometry of an isosceles triangle one obtains

A5 1
4 w̄~12w̄2!1/2. ~B24!

Since it is well known7 that

^d~k01k11k2!&k1 ,k2
5@~2p!2A~k0 ,k1 ,k2!#21,

~B25!

one finally obtains

P̄0~ w̄;2!5H 2

p~12w̄2!1/2 ~ w̄<1!

0 ~ w̄.1!.

~B26!

This result can also be obtained directly from formu
~B18b!; see GR 6.522.11.

For N>3, it does not appear possible to obtain integ
~B18c! in closed form. For modestN, numerical evaluation is
feasible. It is convenient to drop some numerical fact
from Eq. ~B18b! and thus to write

P0~ w̄ !5~2pw̄!S N

p D I , ~B27!

7Result ~B25! is employed frequently in the reduction of wav
number convolutions arising in the statistical theory of 2D hom
geneous turbulence; see Ref.@8#, Appendix A.
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where

I ~e;N!8
1

2 E0

`

pdpJ0~Aep!J0
N~p/AN!. ~B28!

Heree8Nē, whereē8w̄2. As we will verify later,I (e;N) is
normalized such that

I ~0;`!51. ~B29!

Because of the rapid oscillations ofJ0(Aep) for e@1,
straightforward adaptive numerical methods based on
refinement fail. Therefore, following the guidance in th
documentation for@45#, we first evaluate the partial integra
I s defined by integrating the integrand of Eq.~B28! between
j 0,s and j 0,s11 , wherej 0,s is thesth zero ofJ0(Aep) ~except
that j 0,050). Then, we consider the sequence$Sn% of partial
sumsSn8(s50

n I s and accelerate the convergence of that
quence by means of Shanks’ transformation. The results
N52 throughN57 are shown in Fig. 17.

The results forN56 andN57 suggest the approach to
limiting function ~at least forē!1), which we will show is
e2e. To address the case of largeN ~the usual case in prac
tice! a variety of asymptotic methods may be employed.
turn to those in the next Appendix.

APPENDIX C: ASYMPTOTICS OF P0

We now develop various asymptotic analyses of the f
damental PDFP0 . In addition to the central importance o
P0 to the Monte Carlo procedure, the asymptotic analysis
interesting in its own right, and comparison of a variety
approaches provides important cross checks on the calc
tions.

1. The limit N\`

It is simplest to begin by considering the limitN→`.
Note that

-

FIG. 17. Numerical evaluation ofĪ ( ē;N). Solid line, N52;
dotted line,N53; short dashed line,N54; dash-dotted line,N
55; dash-triple-dotted line,N56; long dashed line,N57. Each
curve contains 200 line segments.
2-20
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lim
N→`

J0
N~p/AN!5exp~2 1

4 p2!. ~C1!

~This can be understood as a consequence of the central
theorem or can be proven directly.! Then,

I ~e;`!5
1

2 E0

`

pdpJ0~Aep!exp~2 1
4 p2!, ~C2!

which is a standard form~AS 11.4.29!:

I ~e;`!5e2e. ~C3!

Normalization~B29! follows from this as a special case.
Result ~C3! is not in obvious agreement with the exa

result thatP050 for w̄.1 (e.N). However, upon rewriting
Eq. ~C3! in terms ofP052w̄NI, one has

lim
N→`

P0~ w̄ !5 lim
N→`

2w̄Ne2Nē ~C4a!

54w̄d~ ē ! ~C4b!

52d~w̄ ! ~C4c!

@consistently normalized as*0
`dw̄P0(w̄)51].

Since e5Nē, result ~C3! suggests plottingJ(e;N)8

2 ln I/N. That is done in Fig. 18 forN55 to 10. Form~C3!
is seen to be a good approximation forē&0.5. For ē&1, a
noticeable departure from Eq.~C3! is seen; the upward cur
vature with limē→1 J5` is required in order to satisfyI
50 for ē.1. Except for an overallN-dependent height, the
curvature nearē51 is seen to approach a limiting form. I
Sec. C 6, we will use a saddle-point method to reproduce
large-ē behavior quite well.

2. Standard polar representation ofI „e;N…

For later use it is convenient to revert to a double integ
by recalling that, for any functionF(p), wherep8upu,

FIG. 18. Numerical evaluation ofJ82 ln I/N. Solid line, refer-
ence caseJ5 ē @Eq. ~C3!#; dotted line,N55; short dashed line
N56; dash-dotted line,N57; dash-triple-dotted line,N58; long
dashed line,N59.
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1

2p E dpeip•wF~p!5E
0

`

pdpJ0~ uwup!F~p!; ~C5!

we identify

e8uwu2. ~C6!

@Of course, this was from where form~B28! originally
came.# Thus,

I ~e;N!5
1

4p E dpeip•wJ0
N~p/AN!, ~C7!

with I (e;`) following from the use of Eq.~C1!. If we intro-
ducew̄ andq by

w8ANw̄, p8ANq, ~C8!

we obtain from Eq.~C7! the standard form

I ~e;N!5
N

2p
ReE

2p/2

p/2

duE
0

`

qdqexp@NF~q;u!#,

~C9!

where

F~q;u!8 i w̄q~u!q1 ln J0~q!, ~C10a!

w̄q~u!8w̄ cosu ~C10b!

~the q subscript onw̄q reminds one thatw̄q is the projection
of w onto theq vector, not onto a fixed Cartesianx̂). We took
advantage of the symmetry inu to restrict the integral to
~21

2p,1
2p! at the expense of taking the real part.@Because

w̄x(u) is even, I is also twice the integral from 0 to12p;
however, for later use we prefer the symmetrical integrat
domain.# For N→`, one may replace

ln J0~q!→2 1
4 q2. ~C11!

3. Cumulant expansions and smalle

A variety of techniques are available to treat the limitē
!1. Those include cumulant expansions@8# of the positive-
definite functionJ0

N(p/AN) and asymptotic expansion of th
integral representation of formula~C7! arising from Laplace
transformation. The details are somewhat lengthy and
dious, so are omitted here because of length constraints;8 one
finds

Ī ~ ē;N!'exp@2N~ ē1 1
4 ē2!# ~ ē!1!. ~C12!

This result can also be recovered from the saddle-p
analysis given in Sec. C 6.

8An earlier and lengthier version of this paper that includes ad
tional figures and details of the small-ē calculations is available as
Ref. @24#.
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4. The limit ēÐ1

First, we will reestablish result~B21! that

Ī ~ ē;N![0 ~ ē>1!. ~C13!

Now Ī is proportional to the integral

F~ w̄;u!5E
0

`

qdqeNF~q,u!. ~C14!

For realu the integrand is analytic everywhere in the fin
complexq plane. An application of Cauchy’s theorem the
leads one to 2i Im F52C, whereC is the integral around a
large semicircle in the upper half of theq plane. If the inte-
gral vanishes on that semicircle as its radius approache
finity, one may then deduce that ImF(u)[0 for all u between
21

2p and 1
2p. SinceF is an analytic function ofu, F itself

must vanish. Now for sufficiently largeuqu, J0(q)
;(2/pq)1/2cos(q21

4p). With q5x1 iy , one has ucosqu
5(cos2 xcosh2 y1sin2 xsinh2 y)1/2, which can be reduced
with the aid of various identities toucosqu5(cosh2 y
2sin2 x)1/2<coshuyu. Convergence is then controlled by

Re@ i w̄q1 ln J0~q!#52w̄y1 lnuJ0~q!u ~C15a!

52w̄y1 lnucos~q2 1
4 p!u1

1

2
ln~2/puqu!

~C15b!

,2w̄y1 ln coshy. ~C15c!

The least-convergent case is for largey, where coshy;1
2e

y;
hence Rew,2w̄y1y5(12w̄)y. Therefore, forw̄.1 conver-
gence is assured and result~C13! follows. It is easy to see
that for sufficiently largeN it holds also forw̄51.

5. Large N

It is noteworthy that result~C3! is valid for all e in spite
of the rapid oscillations ofJ0(Aep) for large e; no asymp-
totics are involved. This is unfortunate, in a way, because
case of large but finiteN is not exactly solvable and som
asymptotic methods will be required. It is therefore usefu
give an alternate derivation of result~C3! in order to explain
why the rapid oscillations for largee do not lead to a sim-
plifying asymptotics and to motivate later work. We w
show that result~C3! can be considered to follow from
steepest-descent calculation that is exact for the present

We may choose either a Cartesian (px ,py) or polar (p,u)
representation. Each has certain advantages. In general
expects the polar representation to be superior becau
makes explicit the symmetry that the integral depends
only w[uwu, not wx andwy separately. However, thep inte-
gral runs from 0 tò , leading to concerns about contribu
tions from the vicinity of the origin. In the Cartesian repr
sentation, the contours run from2` to ` and thepx andpy
integrals behave quite symmetrically; however, that rep
sentation obscures the dependence onw alone.
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a. Cartesian formulation

We begin with the Cartesian formulation. Then,

I ~e;`!5X~wx!X~wy!, ~C16!

where

X~wx!8
1

2Ap
E

2`

`

dpxe
ipxwx exp~2 1

4 px
2! ~C17a!

5
1

2Ap
e2wx

2E
2`

`

dpx exp@2 1
4 ~px22iwx!

2#. ~C17b!

Upon introducingp̄x8px22iwx , one finds

X~wx!5
1

2Ap
e2wx

2E
C̄
dp̄x exp~2 1

4 p̄x
2!, ~C18!

where the contourC̄ is a horizontal line at a distance of 2wx
below the real axis. However, since thep̄x integral converges
within the 90° cones centered on the real axis, one may
Cauchy’s theorem to deformC̄ to the real axis. The resulting
integral, of a Gaussian with variances252, is standard; one

finds X(wx)5e2wx
2
. Then,

I ~e;`!5e2wx
2
e2wy

2
5e2uwu25e2e. ~C19!

The oscillations were transformed away by the contour
formation. That is, the original contourC may be deformed
to the path of steepest descent that passes over the si
saddle centered atpx52iwx ~see Fig. 19!. Although the lo-
cation of this saddle moves toi` aswx;Ae→`, the contri-
butions to the integral along the path of steepest descen
sensibly independent of that location, coming from a reg
of O(1) centered on the saddle.

As is well known, this exact result for integration along
contour of steepest descent over a simple saddle is iden
to the result of the standard algorithm that writes

FIG. 19. The simple saddle point for the Cartesian represe
tion with N5`. Dashed line, original contour; solid line, path o
steepest descent. Note that the contour of steepest descent is p
to the abscissa for a simple quadratic saddle.
2-22
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E
C
dzexp@NF~z!#'eNF~z0!E

C
dzexp@ 1

2 NF9~z0!~z2z0!2#

~C20a!

5S 2p

NuF9u D
1/2

eNF~z0!, ~C20b!

where w8(z0)50 and we assume for this example th
F9(z0) is real and negative. This suggests that in the limit
large but finiteN a steepest-descent calculation will still b
useful, though no longer exact.

In the limit N→`, one thus observes that the integr
factors in a Cartesian representation and may be evaluate
performing two independent contour integrations. Unfor
nately, for finite N the presence of higher-order term
@O(p4)# in the expansion ofJ0

N(p/AN) prevents such a fac
torization. It is therefore desirable to consider the polar r
resentation in some detail.

b. Polar formulation

The form of theq integral in Eq.~C9! suggests the use o
the method of steepest descent, although we will see
there are complications in the present case because tq
integral begins atq50, notq52`. Define

I 68
N

2p E
2p/2

p/2

duE
0

6`

qdqeNF, ~C21!

so thatI 5ReI1 . Since the integrand is an analytic functio
of q, one may use Cauchy’s theorem to prove that

I 15I 21S, ~C22!

whereS is the contribution from the pathS of steepest de-
scent. A representative contour plot ofF(q) is shown in Fig.
20. It reveals the existence of saddle points located near
zeros ofJ1(q), and of sinks located at the zeros ofJ0(q).
The path of steepest descent is also shown in Fig. 20. Fu
discussion of the saddle points is given in Sec. C 6.

FIG. 20. Contour plot ofw(q) for w̄50.25. Saddle points are a
the centers of the squares. Solid lines, ReF5const; dashed lines
Im F5const. Medium-thickness lines, branch cuts; heavy cur
path of steepest descent.
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Unfortunately, by replacingq→2q in I 2 and noting that
J0(q) is an even function, one can easily prove thatI 2

5I 1* , so ReI25ReI1 . Upon taking the real part of Eq
~C22!, one therefore proves that ReS50 and the steepest
descent contribution toI 5ReI1 vanishes whenq is inte-
grated over the entire pathS from 2` to ` ~and whenu is
integrated over the entire contour running from21

2p to 1
2p!.

Therefore introducingI 2 is not helpful. It is more productive
to note that

I 15U1S8, ~C23!

whereU is the contribution from the~uphill! path U along
the imaginary axis beginning atq50 and ending at the cen
tral saddle point atq5 i q̂ (q̂ being real!, andS8 is the inte-
gral over the right-hand half ofS ~see Fig. 21!. Because the
horizontal symmetry has been broken, it is not true thatS8 is
purely imaginary; one has

I 5ReU1ReS8. ~C24!

Before attempting a general analysis, it is useful to exp
itly verify Eq. ~C23! in the special case~C11!, for which all
integrals can be performed exactly and one can easily un
stand the sizes of the various contributions. We thus cons

I 15
N

2p E
2p/2

p/2

duE
0

`

qdqeNF, ~C25!

where

F8 iqw̄q2
1

4
q2. ~C26!

With q5x1 iy , the path of steepest descent is readily see
be horizontal,y5q̂ with

q̂52w̄q . ~C27!

Upon introducing the normalized horizontal distancep from
the saddle point by

q5 i q̂1~2/N!1/2p, ~C28!

,

FIG. 21. Alternate integration contour:U (vertical line)1S8
~curved line!.
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one has

S85
1

p E
2p/2

p/2

due2eqE
0

`

dp~p1 iA2ep!e2p2/2

~C29a!

5Sr81 iSi8 , ~C29b!

where

Sr88
1

p E
2p/2

p/2

due2eq, ~C30a!

Si88
1

Ap
E

2p/2

p/2

due2eqAeq. ~C30b!

Becauseeq5O(N) @for w̄5O(1)], theimaginary part ofS8
is much larger in magnitude than the real part. Explicitly,

Sr85
1

p E
2p/2

p/2

due2e cos2u5e2e/2I 0~ 1
2 e!5O~e21/2!;

~C31!

Si8 is O(1). For both Sr8 and Si8 , note that for largee the
contributions to the integrals come from regions within
distance of the order ofAe from the end points.

To evaluateU, we introduce the normalized vertical dis
tancep from the saddle point by

q5 i @ q̂1~2/N!1/2p#, ~C32!

so

U52
1

p E
2p/2

p/2

due2eqE
2A2eq

0

dp~p1A2eq!ep2/2.

~C33!

Thep dp integral can readily be done, yielding a contributio

U1512Sr8 , ~C34!

where we noted definition~C30a!; the second of these term
cancels the real part of Eq.~C29b!. The Aeq term gives a
contribution

U252
2

p E
0

p/2

due2e cosuA2e cosuE
0

A2e cosu
dpep2/2.

~C35!

This can be evaluated exactly by introducingy8A2e sinu.
Then,

U252
2

p
e2eE

0

A2e
dyey2/2E

0

A2e2y2

dpep2/2. ~C36!

The double integral can be interpreted as a 2D Carte
integral over a quarter circle of radiusA2e, so it is most
conveniently done in polar coordinates:
06640
n

U252
2

p
e2eE

0

p/2

dbE
0

A2e
r dr er2/2 ~C37a!

5e2e21. ~C37b!

The 21 cancels against the 1 in Eq.~C34!, so

U5e2e2Sr8 , ~C38!

and, upon adding Eqs.~C29b! and ~C38!,

I 5ReU1ReS85e2e, ~C39!

in agreement with Eq.~C19!.
Because the dominant term inS8 is imaginary, so does no

contribute toI, one might have hoped thatI'ReU. Unfor-
tunately that is not the case; since according to Eq.~C30a!
Sr85O(e21/2), the second term of Eq.~C38! is much larger
than the first, so there is a cancellation of relatively lar
terms betweenS8 andU. This poses a problem in the gener
case~C10!, where the position of the saddle point obeys
implicit equation and theu integrals that arise cannot b
done analytically. Therefore, we will consider deformatio
of theu contour and show how to extract the correct answ
from Eq.~C30b!. Ignore for a moment the constraint that th
end points of theu integral are pinned to6 1

2 p. One has
explicitly

Si85S e

p D 1/2E
2p/2

p/2

du cosue2e cos2u. ~C40!

The contour plot of2cos2u in the complexu plane is shown
in Fig. 22. Saddle points are found atu56 1

2 p and atu
50. Consider, in particular, the integral fromq5 i` so q5
2 i`, which is along a contourD of constant phase. With
q5x1 iy and cosu5cosxcoshy2i sinxsinhy, which re-
duces to cosu5coshy on D, one has

Si85S e

p D 1/2E
2`

`

dy coshye2e cosh2y. ~C41!

With z8sinhy and cosh2 y511sinh2 y, this becomes

FIG. 22. Contour plot of2cos2 u. Dashed lines, contoursC;
solid line; contourD. ContoursC can be deformed into any curve
that connect the indicated endpoints.
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Si85S e

p D 1/2

e2eE
2`

`

dze2ez2
5e2e. ~C42!

Thus, one obtains the correct answer by integrating
dominantq-saddle-point contribution along theu contourD
of steepest descent. Note that although that integral ca
done exactly in the present case, it can also be recov
exactly by the standard procedure of Taylor expansion n
the saddle pointu50 and performing a Gaussian integral

Of course,Si8 is integrated along the real axisR, not
along D. However, since the integrand is analytic, one c
write schematically

Si85E
R

du5E
C
du1E

D
du, ~C43!

whereC is an arbitrary contour that connectsu52 1
2 p to u

5 i` andu52 i` to u5 1
2 p; see Fig. 22. SinceSi8 is real by

definition, one has Im*C52Im*D . Thus, with *R du
5*C du1*D du, one has

I 75E
R

duE
U

dq1E
R

duS8, ~C44a!

~C44b!

We have shown with the underbraces the values of var
terms. This procedure of extracting the steepest-descent
tribution to theu integral can be viewed as adding 052I
1I to the first underbraced terms of Eq.~C44b!. However,
that interpretation has the deficiency that one could equ
well addl3052lI 1lI , wherel is an arbitrary real num-
ber; that would make the numerical coefficient of theD con-
tribution uncertain. Thatl51 is seen more fundamentall
from decomposition~C44a! ~with no real part taken! and by
the demonstration that we obtain the correct answer for
special case~C11!.

6. Saddle-point analysis of the limitē›1

By appealing to the results for the specialN5` case
treated in the last section, we will in the general case t
approximate

I'
1

2 S N

2p D E
D

duE
S
qdqeNF. ~C45!

The factor of 1
2 takes into account that we are to integra

only over the right-hand half of theq saddle.
For the general structure of the complexq plane, we refer

again to Fig. 20. It is easy to verify the existence and ori
tation of the saddle points for sufficiently smallw̄q . Station-
ary points are determined from the solution~s! of
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]q
F~q;u!5 i w̄q2

J1~q!

J0~q!
. ~C46!

The solutions of this transcendental equation determine fu
tions q̂( i )[q̂( i )(u), where we label the various roots byi;
again, the hat signifies dependence onu. For smallw̄x , either
J1 must be relatively small orJ0 must be relatively large.
Since the Bessel functions are bounded according
uJn(z)u< 1

2 zun exp(uyu)/G(n11) for n>2 1
2 ~AS 9.1.62! and

since for large z the asymptotic forms Jn(z)
5@2/(pz)#1/2@cos(z21

2np21
4p)1euyuO(uzu21)# ~AS 9.2.1! dif-

fer merely by a phase factor, the only possibility is thatJ1(q)
is small, i.e., thatq lies near the zerosj 1,s of J1 . Therefore,
we write

q5 j 1,s1 id ~s50, 61, 62, ...! ~C47!

( j 1,050). Then,

J1~q!'J1~ j 1,s!1 1
2 @J0~ j 1,s!2J2~ j 1,s!# id ~C48a!

5 1
2 @J0~ j 1,s!2J2~ j 1,s!# id, ~C48b!

and Eq.~C46! reduces to

d5
2w̄q

@12J2~ j 1,s!/J0~ j 1,s!#
. ~C49!

Because the zeros of the Bessel functions interlace, it is
ways the case thatJ2( j 1,s)/J0( j 1,s),0, sod is always posi-
tive. For s50, one hasJ2( j 1,0)5J2(0)50, so we recover
Eq. ~C27!, q'q̂(A)'2i w̄x .

To understand the orientation of these saddle points,
compute

F9[
]2

]q2 F~q;u!52R8~q!, ~C50!

where

R~q!8J1~q!/J0~q!. ~C51!

With the aid of the identitiesJ08(z)52J1(z) and J18(z)
5J0(z)2J1(z)/z, one finds

R8~q!5
J0~q!J18~q!2J1~q!J08~q!

J0~q!2 ~C52a!

512
1

q

J1~q!

J0~q!
1S J1~q!

J0~q! D
2

. ~C52b!

For the saddles, one may simplify Eq.~C52b! with the aid of
Eq. ~C46! to

Fs952F12w̄21S yw̄

uqu2D2 i S xw̄

uqu2D G . ~C53!

Since w̄,1 andy.0, one has ReFs9,0. For the principal
saddle atq̂(A) (x50), the path of steepest descent is ho
2-25
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zontal. The other saddles are somewhat skewed, but the
of steepest descent is still basically from left to right.

To determine which saddle point dominates, one may
mally carry out the saddle-point integrations. One can ve
that the principal rootq̂x

(A) dominates for smallw̄x . One can
also determine that this root continues to dominate asw̄
→1.

For finite w̄ the principal root must be determined b
solution of the transcendental equation~C46!. Symmetry
guarantees thatq̂x

(A) is purely imaginary for allw̄, so we
introduce the real numberq̄ by q5 i q̄; thus one finds the
implicit equation forq̄(u) to be

I 1~ q̂!/I 0~ q̂!5w̄q~u!, ~C54!

whereI n is the modified Bessel function of the first kind an
q̂ is the specificq̄ that solves Eq.~C54!. @See Fig. 23 for a
graphical representation of the solution of Eq.~C54!.# Equa-
tion ~C52b! becomes

R8~q![S~ q̄!512
I 1~ q̄!

q̄I 0~ q̄!
2S I 1~ q̄!

I 0~ q̄! D
2

. ~C55!

This function has the properties

S~0!51/2, ~C56a!

S~`!50, ~C56b!

S~ q̄!>0; ~C56c!

it is graphed in Fig. 24. One may rewrite Eq.~C55! in a form
more efficient for numerical computation by using E
~C54!:

S„q̂~u!…512h̄„q̂~u!…2w̄q
2~u!, ~C57!

where

h̄„q̄~u!…5w̄q~u!/q̄~u!. ~C58!

FIG. 23. Illustration of the solution of the implicit equatio
~C54!. Solid curve,I 1(q̄)/I 0(q̄); horizontal dotted line, specified
w̄q ; vertical dotted line, derivedq̂. As w̄→1, q̂→`.
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We now proceed to analyze theu integral. Upon integrat-
ing over the principalq saddle using the standard Gaussi
approximation, we find

1

2
S'

N

4p E
D

du i q̂~u!exp@NC~u!#S 2p

NuF9u D
1/2

,

~C59!

where

C~u!82w̄q~u!q̂~u!1 ln I 0„q̂~u!…. ~C60!

To find the stationary points, we calculate

C8~u!5@2w̄q~u!1I 1~ q̂!/I 0~ q̂!#q̂~u!1w̄q̂~u!sinu
~C61a!

5w̄q̂~u!sinu, ~C61b!

since the term in brackets vanishes by definition ofq̂ @see
Eq. ~C54!#. This result has the same form seen in the spe
case; we are led again tou50 as the principal root. At tha
point w̄q5w̄ and C9(0)5w̄q̂, where nowq̂[q̂(0). Upon
completing theu integration by integrating vertically down
ward on D using the Gaussian approximation, one fina
finds

I ~e;N!5
1

2 S 1

h̄~ q̂!S~ q̂! D
1/2

exp~N@2w̄q̂1 ln I 0~ q̂!# !.

~C62!

7. Summary of the results

In summary, for any Fourier amplitudewk[w, the natural
intensity variable is

ē8uw̄u2, ~C63!

where

w̄8~11k2!w ~C64!

@see Eq.~B17!#. The fundamental probability density func
tion P0(w̄) is given from Eq. ~B27! as P0(w̄)
52Nw̄ Ī ( ē;N). One has the exact result

FIG. 24. The functionS(q̄) @see Eq.~C55!#.
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Ī ~ ē;N![0 ~ ē>1!. ~C65!

For ē,1 andN large, one has approximately

Ī ~ ē;N!'S 1

2@ĥ~ q̂!S~ q̂!#1/2Dexp@2NC~ q̂!# ~C66!

~upon introducing a minus sign into the formula to make
look more like a conventional PDF!, where

C~ q̄!8q̄w̄2 ln I 0~ q̄!, ~C67a!

h̄~ q̄!8w̄/q̄, ~C67b!

S~ q̄!812h̄~ q̄!2w̄2, ~C67c!

andq̂5q̂(w̄) is to be determined by solution of the transce
dental equation

FIG. 25. Comparison of the asymptotic result~C66! with an

exact numerical evaluation ofJ82N21 ln Ī for N517. Solid line,
exact ~numerical! result; long dashed line,~C66! ~overlays exact
result!; dotted line,y1 ~overlays exact result forw̄&0.6); dashed
line, y2 ~overlays exact result forw̄&0.8); dash-dotted line,y3

~overlays exact result forw̄*0.45). See the text for the definition
of the approximationsyi .
-

.
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I 1~ q̂!/I 0~ q̂!5w̄. ~C68!

It is a straightforward exercise to show that for smallw̄ for-
mula ~C66! reduces to

Ī ~ ē;n!'exp@2N~ ē1 1
4 ē2!#, ~C69!

in agreement with Eq.~C12!.
The need to solve Eq.~C68!, which is conventionally

done by numerical iteration, means that the rigorous num
cal evaluation ofP0 will be very slow. Fortunately, we gen
erally consider states of intensity sufficiently low that t
much simpler approximation~C12! is adequate.

Numerical verification of result~C66! is virtually impos-
sible for realisticN ~e.g.,N51597) because of loss of pre
cision. Nevertheless, even physically very smallN may be
asymptotically large. In Fig. 25, we compare a direct nume
cal integration of J82N21 ln Ī for N517 with the
asymptotic result~C66!. The agreement is seen to be virt
ally perfect; the relative error~for Ī itself, not its logarithm!
is less than 0.5% over the entire domain. Also plotted
these figures are various simpler approximationsyi , i 51, 2,
3. The functiony is Eq. ~C3!, J'ē; y2 follows from Eq.
~C69!, J'ē(11 1

4 ē). The functiony3 is the result of the
asymptotic solution of Eq.~C68! for x812w̄!1:

q̄'F2xS 12
1

2
xD G21

, ~C70a!

J'S q̄1
1

4D x2
1

2
ln~2pq̄!1

1

2N
ln~4hS!. ~C70b!

This is seen to be an excellent approximation down to ab
w̄'0.5; it is actually used in the Monte Carlo calculatio
for w̄ close to 1, where the library routine that solves E
~C68! has difficulty in converging.
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